Quantum Information Processing

One promising approach towards robust and scalable quantum information processing is the modular approach – using quantum entanglement to connect many robust quantum modules and build a large scale quantum information processor.

For superconducting platform, microwave photons can generate entanglement between different quantum modules of superconducting cavities with high efficiency. Within each modular superconducting cavity, the nonlinearity of Josephson junction enables local universal control of the cavity mode, which can store quantum information over long times. Hence, it is feasible to achieve scalable quantum information processing using superconducting devices.

  • We investigate universal quantum control of the superconducting circuits. We have developed and demonstrated the selective number-dependent arbitrary phase (SNAP) gate of the cavity mode in collaboration with the Schoelkopf group at Yale.
  • We explore engineered dissipation for coherent quantum information processing and protection against undesired decoherence.
  • We invent efficient encoding schemes and quantum error correction protocols to correct practical imperfections, in particular bosonic excitation loss errors.
  • We explore reliable quantum measurement and verification protocols for large scale quantum systems.

Selected Publications:

  1. New class of quantum error-correcting codes for a bosonic mode,” M. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang and S. M. Girvin, arXiv:1602.00008.
  2. Holonomic quantum computing with cat-qudits,” V. V. Albert, S. Krastanov, C. Shen, R.-B. Liu, R. Schoelkopf, M. H. Devoret, M. Mirrahimi and L. Jiang, arXiv: 1503.00194.
  3. Universal control of an oscillator with dispersive coupling to a qubit,” S. Krastanov, V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres, B. Vlastakis, R. J. Schoelkopf and L. Jiang, Phys. Rev. A 92 (4), 040303 (2015).
  4. Cavity State Manipulation Using Photon-Number Selective Phase Gates,” R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V. Albert, L. Frunzio, L. Jiang and R. J. Schoelkopf, Phys. Rev. Lett. 115 (13), 137002 (2015).
  5. Characterizing entanglement of an artificial atom and a cavity cat state with Bell’s inequality,” B. Vlastakis, A. Petrenko, N. Ofek, L. Sun, Z. Leghtas, K. Sliwa, Y. Liu, M. Hatridge, J. Blumoff, L. Frunzio, M. Mirrahimi, L. Jiang, M. H. Devoret and R. J. Schoelkopf, Nat. Commun. 6, 8970 (2015).
  6. Dynamically protected cat-qubits: a new paradigm for universal quantum computation,” M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. Schoelkopf, L. Jiang and M. Devoret, New J. Phys. 16, 045014 (2014).