
ARTICLE

Received 6 Sep 2012 | Accepted 20 Jan 2013 | Published 12 Mar 2013

Topologically protected quantum state
transfer in a chiral spin liquid
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Topology plays a central role in ensuring the robustness of a wide variety of physical

phenomena. Notable examples range from the current-carrying edge states associated with

the quantum Hall and the quantum spin Hall effects to topologically protected quantum

memory and quantum logic operations. Here we propose and analyse a topologically

protected channel for the transfer of quantum states between remote quantum nodes.

In our approach, state transfer is mediated by the edge mode of a chiral spin liquid.

We demonstrate that the proposed method is intrinsically robust to realistic imperfections

associated with disorder and decoherence. Possible experimental implementations and

applications to the detection and characterization of spin liquid phases are discussed.
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T
he decoherence of both quantum states and quantum
channels represents a major hurdle in the quest for the
realization of scalable quantum devices1,2. Several avenues

are currently being explored to address these important
challenges. For example, quantum error correction can
significantly extend the lifetime of quantum memories and
suppress the errors associated with quantum logic operations3,4;
its practical realization, however, requires a high level of quantum
control that is as yet, not experimentally accessible. Topology also
provides a paradigm for achieving protected quantum states;
indeed, if such states can be stored in the topological degrees
of freedom of certain exotic states of matter, they become
intrinsically robust against local noise5,6. Alternatively, the
implementation of long-lived quantum memories can be
achieved by encoding quantum bits in carefully chosen physical
degrees of freedom. In particular, the natural isolation of
nuclear spins immunizes them from the environment and
makes them an exceptional candidate for the storage of
quantum information7–11. This isolation implies, however, that
spatially remote memories interact extremely weakly; this shifts,
the challenge of scalability to the development of quantum
channels capable of connecting remote registers in a robust and
noise-free manner.

Here we describe a novel approach to the realization of
intrinsically robust quantum channels, which enable state transfer
between remote qubit registers. We envision state transfer to be
mediated by a two-dimensional (2D) system composed of
interacting qubits (for example, spins or pseudo-spins); specifi-
cally, the system is tuned into a gapped chiral spin liquid phase
that harbours a fermionic edge mode. The prototype of such a
spin liquid is the gapped B phase (CSLB) of the Kitaev
honeycomb model12. Although such a phase is best known for
its non-Abelian vortex excitations, here, by operating at finite
temperatures below the gap, we make use of its Majorana
fermionic edge mode as a topologically protected quantum
channel. By contrast to previous spin-chain-based approaches,
which are critically sensitive to disorder13,14, our method exploits
topological protection to enable high-fidelity quantum
information transport. We will discuss possible applications of
our protocol for the spectroscopic characterization of spin liquid
states15. Finally, we describe an example implementation based
upon an engineered superconducting qubit lattice.

Results
Approach to topologically protected state transfer. Our
approach to quantum state transfer is schematically illustrated in
Fig. 1. Quantum information is encoded in a two-qubit register,
with each qubit capable of being individually manipulated.
The register is coupled to the edge of a 2D droplet, whose ele-
ments we assume cannot be individually addressed but can be
globally ‘engineered’ to create a spin liquid state in the CSLB
phase. The transfer protocol proceeds by mapping the quantum
information stored in the left-hand spin-register onto the chiral
edge mode of the droplet. The resulting wavepacket traverses the
edge before retrieval at the remote register.

A distinct feature of our protocol, as compared with previous
approaches13,14,16, is the fundamental robustness of the quantum
channel. The chiral nature of the Majorana fermionic edge mode
ensures that destructive backscattering during state transfer is
highly suppressed. The characteristic (linear) dispersion of the
edge-mode also ensures that wave packet distortion is minimized.
Moreover, we demonstrate that our approach is remarkably
insensitive to disorder and decoherence affecting both the bulk
and edge of the droplet. Although any spin system with a stable
CSLB-like phase can potentially mediate topologically protected

state transfer (TPST), to illustrate the microscopic mechanism
responsible for such state transfer, we turn initially to a particular
model and will later generalize our analysis to include the effects
of disorder, additional interactions and decoherence.

TPST on the decorated honeycomb. We now consider a
specific exactly solvable model, which supports robust TPST17.
Within the so-called Yao-Kivelson model, the spin (or pseudo-
spin) 1/2 particles are situated on a triangular-decorated
honeycomb lattice as depicted in Fig. 2 (ref. 17). The associated
Hamiltonian naturally generalizes the Kitaev model12 and
features a chiral spin liquid ground state (CSLB phase),
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where ~s are Pauli spin operators (�h¼ 1). The model may be
solved by introducing four Majorana operators, {g0,g1,g2,g3} for
each spin, as shown schematically in Fig. 2a and by representing
the spin algebra as: sx¼ ig1g0, sy¼ ig2g0, sz¼ ig3g0 (refs 12,17).
The Majorana operators are Hermitian and satisfy the standard
anticommutation relation {gl,gm}¼ 2dlm. The Hilbert space
associated with the physical spin is a 2D subspace of the
extended 4D Majorana Hilbert space; thus, we must impose
the gauge projection, P¼ (1þD)/2, where D¼ g1g2g3g0 (ref. 12).

Transforming to Majorana operators results in the extended
Hamiltonian
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Figure 1 | Schematic representation of topologically protected state

transfer. The grey droplet represents a 2D array of interacting qubits

(spins or pseudo-spins) tuned into the CSLB phase. Quantum registers

composed of a transfer qubit (green) and a memory qubit (gold) are

arranged around the edge of the 2D droplet and coupling between them

occurs through the chiral edge mode. (1) By mapping the quantum

information onto a fermionic wavepacket (blue) travelling along the edge,

the quantum state can be transferred to a remote register. The wavepacket

travels only in the direction of the blue arrow; this chirality prevents

mode localization and destructive backscattering. At a specified time at

the remote register location, the coupling is turned on and the wavepacket

is captured (2). Given an ancillary memory qubit and local register

manipulations, a two-qubit gate (3) can be performed before the quantum

state is transferred back to the original register and stored (4–5). This

allows for universal computation between the memory qubits of spatially

separated registers.
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where Ûi;j¼ igai g
a
j (a depends on the type of ij-link) for ij

connected and zero otherwise; these Ûi;j correspond to the boxed
Majorana pairs illustrated in Fig. 2a. Remarkably each Ûi;j
commutes with the Hamiltonian and with all other Ûl;m, implying
that the extended Hilbert space can be divided into sectors
corresponding to static choices of {Ui,j¼±1} (refs 12,17).

The choice of {Ui,j} yields a Hamiltonian, which is quadratic in
the g0 Majorana operators; from the perspective of these
Majoranas, Ui,j is a static background Z2 gauge field. The
physical states are sensitive only to the flux of the gauge field,
wðpÞ¼

Q
ij2@p Ui;j, where p represents a plaquette, qp is its

boundary and ij is oriented according to the arrows in
Fig. 2b (ref. 17). For any link with Ui,j¼ þ 1, this orientation can
also be interpreted as the direction in which a g0 Majorana hops in
order to accumulate a p/2 phase. The ground state flux sector of
the model has w(p)¼ þ 1 for all plaquettes, corresponding to p

phase around the dodecagonal plaquettes and p/2 phase around
the triangular plaquettes, as shown in Fig. 2b. The p/2 phase
around the triangular plaquettes indicates the breaking of time-
reversal symmetry necessary for a chiral ground state. Alternate
flux sectors contain plaquettes with vortex excitations defined by
w(p)¼ � 1. In general, such vortices are energetically gapped by
Dv, but the energy and dynamics of vortices near the edge are
controlled by the details of the boundary.

In each flux sector, the associated Majorana Hamiltonian can
be diagonalized through a unitary transformation Q, such that

k
P
i;j

Qk;iðiUi;jÞQ�k0;j¼ dkk0ek, yielding Hg¼ 1
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j , N is the number of spins on the lattice and the

index k is ordered according to energy. Owing to particle-hole
symmetry, ek¼ � e� k and cwk ¼ c� k; thus, by restricting to k40,
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where ck and cwk satisfy Dirac anticommutation relations.
Diagonalization of the ground state flux sector on a cylinder
yields three bulk fermion bands, energetically gapped by Db, as
shown in Fig. 3 (ref. 17). At the edge, the fermionic quasiparticles
form gapless chiral modes, which are guaranteed by the nontrivial
Chern number of the bulk fermion bands.

Qubit coupling to a chiral edge. We now consider the addition
of qubit registers, which can be individually manipulated and
read out, to the edge of the exactly solved model with open
boundary conditions18. Each edge spin with coordination two has
an uncoupled Majorana operator, which we term dangling as
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Figure 2 | Coupling between qubit register and the droplet edge.

(a) Schematic representation of the generalized Kitaev Hamiltonian on the

decorated honeycomb lattice. Spins are represented by four Majorana

operators; spin–spin interactions become products of the four Majoranas

living on each link. Boxed spins correspond to the Ûi; j operators, which

determine the effective hopping associated with the g0 Majoranas. Coupling

(dashed line) between the quantum register and the 2D droplet can occur

at any edge vortex with an unpaired Majorana; the Majorana flavour

determines the form of the spin–spin interaction that introduces the desired

additional hopping. (b) Schematic representation of the ground state flux

configuration. Each arrow represents a Majorana hopping of i, yielding p
phase (oriented counterclockwise) around the dodecagonal plaquettes and

p/2 phase around the triangular plaquettes. Vortex excitations (circular

arrows) correspond to the flipping of a Uij link (red arrow and link), which

yields w(p)¼ � 1 in the two adjacent plaquettes. Quantum registers

corresponding to a transfer qubit (green) and a memory qubit (gold) are

shown coupled into the droplet (injection points) at two different

dangling edge spins.
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Figure 3 | Fermionic spectrum of the ground state flux sector. The model

is placed on a cylinder of circumference 61 and width 40 unit cells, with a

zigzag edge oriented such that the y direction is periodic55. The chiral edge

modes are clearly visible near kya¼ p at energies below the bulk fermion

gap Db¼0.46k. Numerical simulations also indicate the following values of

the two vortex gaps: 0.14k (dodecagonal vortex) and 0.17k (triangular

vortex). The inset illustrates the oppositely propagating chiral edge mode

(red and green) at each end of the cylinder. In a droplet, the flux sector with

completely opposite flux in each plaquette would support edge modes

travelling in a reversed orientation.
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depicted in Fig. 2a. We can extend the definition of vortices to
include the dangling plaquettes defined by the Ui,j links between
dangling Majoranas, as shown by the red rectangle in Fig. 2a.
These dangling vortices are completely decoupled from the
fermions and lead to a large degeneracy of the model. However,
generic perturbations will lift this degeneracy by gapping out
these dangling vortex states; in this situation, as we later describe,
the control of dangling vortices at the injection point will become
important.

To illustrate TPST, we consider the full Hamiltonian
HT¼H0þHint, where Hint characterizes the coupling between
the two spin registers (termed L and R) and dangling spins at the
edge of the droplet (Fig. 2b),

Hint¼ �
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Here, DS is the splitting of the register states (for example, by
an applied field), b,Z are chosen to respect the interaction
symmetry at the injection points, and gL, gR represent the
interaction strength between the registers and the injection spins
(a and b) as shown in Fig. 2. Transforming to Majorana operators
yields Hint¼ �ðDS=2Þðig3
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where, without loss of generality, we have chosen a sxsx register-
edge interaction.

The existence of a dangling Majorana at the droplet edge is
critical to enable coupling to the edge mode. At the injection
points (Fig. 2b), the register-edge coupling of equation (4) not
only creates a fermionic excitation, but also introduces a dangling
vortex (by flipping the Ui,j corresponding to the adjacent dangling
plaquette). Thus, in order to exploit the chiral fermion mode to
transport quantum information, we will need to control the
injection point (Supplementary Fig. S1). Imperfections in such
control will result in the spin-register coupling to additional
nearby spins. However, as the nearest spins surrounding the
injection point will not contain dangling Majoranas, these
additional interactions will naturally gap out.

Even in the presence of the additional interactions prescribed
in equation (4), as UL,a and UR,b are conserved, the model remains
exactly solvable. Expressed in terms of the eigenmodes of the
unperturbed Hamiltonian in the ground state flux sector,
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where we have defined cwL;R ¼ 1=2ðgL;R
0 � igL;R

3 Þ and

cL;R ¼ 1=2ðgL;R
0 þ igL;R

3 Þ; in this language, the sz spin state of the
L(R) qubit is encoded in the occupation of the L(R) fermion
mode. The first term of the Hamiltonian characterizes the modes
of the 2D droplet, the second and third terms characterize the
splitting associated with the spin registers, whereas the final two
terms capture the coupling between the registers and the dangling
edge spins. This Hamiltonian acts in the extended fermionic
Hilbert space and returning to physical spin states requires gauge
projection (Supplementary Discussion).

TPST in the dot and droplet regime. The coupling between the
register and the chiral edge mode can be analysed in two distinct
regimes: (1) the mesoscopic dot regime and (2) the macroscopic

droplet regime. The distinction between these two regimes is best
understood from a perspective of resolvability; in the dot regime,
we consider the coupling to a small finite-size system, enabling
energy resolution of the individual chiral edge modes. Thus,
TPST is mediated by a single fermionic eigenmode of the
system14. Meanwhile, in the droplet regime, we consider
the coupling to a larger system, in which energy resolution at
the single mode level would be extremely difficult. In this regime,
we encode the spin register’s quantum information in a travelling
fermionic wavepacket.

In both the dot and droplet regimes, TPST relies on the
coherent transfer of fermionic occupation from register L to R. In
order for this to be well defined, we choose DS40 and gL, gRoDS

so that the effective Dirac fermions, cwk , are conserved. In the dot
regime, TPST can be understood by tuning DS to be resonant with
a single-edge mode, ~k, with energy e~k; so long as the coupling
strength is weak enough to energetically resolve this mode,
evolution is governed by the effective Hamiltonian,

Heff ¼ �
iffiffiffi
2
p gLQ�~k; a

cwLc~k�
iffiffiffi
2
p gRQ�~k;bcwRc~kþ h:c: ð6Þ

and hence, state transfer proceeds via resonant fermion tunnelling,
as depicted in Fig. 4a (ref. 14). The timescale, t, required to achieve
high-fidelity state transfer depends only on the energy spacing
between adjacent modes, De � k=‘, where ‘ is the system’s linear
dimension; to prevent the leakage of quantum information into
off-resonant fermionic modes, t4� ‘=k (ref. 14).

In the droplet regime, we encode the fermionic occupation into
the presence/absence of a wavepacket travelling along the chiral
edge, as illustrated in Fig. 4b (ref. 19). Upon tuning both spin
registers to an energy DS, the encoding can be performed by
choosing gL(t) with the following time dependence,

gLðtÞ¼
ffiffiffi
v
p

f ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1
t dt0 j f ðt0Þ j 2

q ð7Þ

where f(t) characterizes the shape of the desired wavepacket
and v is the group velocity of the chiral mode. Subsequent retrieval
can be similarly achieved by using time-reversal symmetry to
appropriately choose the shaping of gR(t) (Supplementary
Methods). We note that such wavepacket encoding is in
direct analogy to the storage and retrieval of photonic
wavepackets20–22. In contrast to the dot regime, the magnitude
of the coupling strengths may be of order DS, which is

gL(t)

Droplet regime

gR(t)

gL

a

b

gR

Dot regime

Δ�

Figure 4 | Regimes of TPST. (a) Schematic representation of the dot

regime, wherein TPST becomes analogous to tunnelling. In this mesoscopic

dot regime, the coupling strength is kept weak enough to enable resolution

of single-edge modes. (b) Schematic representation of the droplet regime,

wherein TPST is achieved by mapping the quantum information from a spin

register onto a travelling fermionic wavepacket. The wavepacket is caught

at the remote register, after which a two-qubit gate (Supplementary Fig. S2)

is performed before the information is returned (via a wavepacket) to the

initial register.
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independent of ‘. However, the time scale of TPST includes
the wavepacket’s propagation time, which depends on both the
physical separation of the registers and the wavepacket group
velocity.

Effects of imperfections, disorder and decoherence. Having
explicitly demonstrated TPST in an exactly solvable model, we
now consider additional imperfections, disorder, temperature and
decoherence. As the CSLB phase has a bulk gap and a topological
invariant protecting its chiral edge mode, we expect the effective
low-energy fermion dynamics to be insensitive to small pertur-
bations12. Furthermore, the chirality of the edge mode prevents
localization and the Majorana nature of the edge fermions
strongly suppresses the phase space for scattering, thereby
limiting nonlinear corrections to the dispersion13,14,16. In the
following, we consider various classes of imperfections arising
from local spin perturbations and coupling to a finite temperature
bath; these result in: (1) vortex excitations, (2) finite Majorana
lifetime and (3) dynamical decoherence.

At low temperatures T, there will be a dilute gas of bulk
vortices, Nv � npe�Dv=T , where np represents the total number of
bulk plaquettes. As a vortex excitation corresponds to a p flux
relative to the ground state, a circumambulating fermion acquires
an additional phase of Nvp. Thus, the presence of vortices can
have two relevant effects: (1) vortices within a localization length,
xB a (where a is the lattice spacing), of the edge can scatter a
travelling fermion and (2) an odd number of vortices induces a
p-shift of the net phase23.

Perturbations also generically lift the aforementioned
degeneracy associated with dangling edge vortices. However,
this will only affect the fidelity of TPST at the injection point,
where one must ensure the existence of a single dangling edge
Majorana. Away from the injection point, three possibilities arise:
First, zero energy dangling vortices are completely decoupled
from the fermions, and hence will be irrelevant for TPST. Second,
low-energy dangling vortices will scatter only minimally, as the
interaction strength between the dangling Majoranas, and hence
the hopping strength across the dangling link, will be extremely
weak (see Methods for details). Finally, much as in the bulk, the
effect of high-energy dangling vortices will be suppressed by
their gap.

As static effects, all of the aforementioned error contributions
can be abrogated by the use of tomography; hence, it is crucial to
effectively freeze out vortex fluctuations on the time scale of
TPST, and this is most easily accomplished at temperatures that
are small compared with Dv.

Next, we consider the addition of generic perturbative local
spin interactions, Hp, to the full Hamiltonian, HT. Certain classes
of perturbations leave the model exactly solvable; more generally,
however, if Hp is longer ranged or does not respect the model’s
interaction symmetry, the gauge field acquires dynamics and the
effective fermionic theory is no longer free. In order to
understand these effects, we turn to a low-energy continuum
theory of the Majorana edge (assuming that dangling vortex
excitations are either decoupled or gapped out),

He¼ v
Z

dp
2p

pcwpcp¼ v
Z

dxgðxÞði@ÞgðxÞ; ð8Þ

where cwp ¼ c� p is the subset of fcwkg in equation (3), which creates
an edge excitation at momentum p and where we have switched
to a continuum normalization of the Majorana field, {g(x),
g(y)}¼ d(x� y) (ref. 23).

The introduction of interactions induces decay of the
quasiparticle excitations cwp . This quasiparticle lifetime limits the
size of the droplet around which coherent excitations may be

sent. The leading order symmetry-allowed interaction is of the
form24

H0e¼ l
Z

dxgðxÞði@ÞgðxÞði@Þ2gðxÞði@Þ3gðxÞ; ð9Þ
where l characterizes the strength of the interaction. We estimate
the decay rate Gint

p of a single quasiparticle excitation using
Fermi’s golden rule (see Methods for details). In the low-
temperature limit (ep c kBT),

Gint
p �

l2p13

v
þ l2p11T2

v
þOðT4Þ: ð10Þ

To relate Gint
p to the microscopic model parameters, we

consider generic vortex-inducing local spin perturbations of
strength k0, which yield l � kðk0=kÞ2a7 in second-order
perturbation theory. Substituting into equation (10) allows
us to re-express the zero temperature decay rate as
Gint

p � k2=DSð Þðk0=kÞ4ðapÞ14, where DS¼ vp is the energy of the
injected TPST fermion. The surprisingly strong dependence on
momenta suggests that quasiparticle decay can safely be neglected
so long as po1/a.

Finally, we consider dynamical decoherence due to weak
coupling with a low-temperature phonon bath, which induces
additional decay Gdec

p of the fermion involved in TPST. We
assume that the bath couples to local spin operators sai and
that its effect is characterized by its noise spectral density,
SðoÞ (ref. 25). Multi-spin perturbations can be analysed in an
analogous manner and do not change the qualitative results
summarized below. In the bulk, each such operator creates a pair
of vortices (Fig. 2b) in addition to creating or destroying a
Majorana quasiparticle. As the fermionic edge modes are
exponentially localized, the contribution of this process to the
decay rate is suppressed by e� d/x, where d is the distance from
site i to the edge. Moreover, there is an additional energy
suppression from Sðo0Þ � e�o0=kBT where o0¼ 2Dv is the energy
cost of creating a pair of vortices.

This brings us to the primary decoherence effect: edge noise.
There are two types of spin operators acting on the lattice edge:
(1) those which only create or destroy an edge fermion (type I)
and (2) those which also introduce vortices (type II–IV), as
shown in Fig. 5. Type I spin operators can only induce decay if
they directly annihilate the injected TPST edge fermion, a process
costing energy DS. By contrast, once a vortex is created at any
edge plaquette it can scatter the travelling TPST fermion,
implying that the associated decoherence is enhanced by a
factor of ‘, as depicted in Fig. 5. Thus, the total TPST decay rate
induced by edge noise is,

Gdec
p � e�DS=kBT þ ‘e�DV=kBT : ð11Þ

Strikingly, the sources of decoherence in TPST are exponentially
suppressed in temperature and thus can be controlled14.

The above analysis generalizes to other types of noise sources.
Of particular relevance in the context of solid-state spin systems
are nuclear spin baths, in which SðoÞ � 1

�
o2þ 1=t2

c

� �� �
, where

tc is the bath’s correlation time. In this model, the Arrhenius-type
energy suppressions of equation (11) becomes Gdec

p � 1=D2
v if

Dv � 1=tc (ref. 25).

Discussion
We now illustrate these considerations by discussing a specific
implementation of our proposed technique. As a first example,
let us consider an implementation of the robust quantum
channel based upon the pseudo-spin degrees of freedom of
superconducting qubits26–28. Specifically, we consider an

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2531 ARTICLE

NATURE COMMUNICATIONS | 4:1585 | DOI: 10.1038/ncomms2531 | www.nature.com/naturecommunications 5

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


engineered lattice of superconducting (SC) qubits tuned to the
CSLB phase; the three distinct types of nearest neighbour
interactions sxsx, sysy, szsz can be achieved, respectively, via a
mutual inductance, an LC oscillator and a capacitance28,29. Such
an approach could provide a superconducting pseudo-spin-edge
quantum channel with remarkable properties. Specifically, the
gapped nature of the CSLB phase strongly suppresses the effects
of decoherence (G0) typically associated with single SC-qubits.

We will work with experimentally realistic parameters:
temperature TB 10 mK, a macroscopic length scale ‘ � 1 mm,
kB 10 GHz, DS B 0.8 GHz, DVB 1.7 GHz and a lattice spacing,
a¼ 10mm. By considering a generic vortex inducing pseudo-spin
perturbation of strength k0 ¼ 0.1k, we can estimate the interaction
induced decay rate (equation (10)), Gint

p � 10� 3 Hz. As expected,
such a decay rate is highly suppressed owing to the Majorana
character of the edge-modes. For gaps on the order of
GHz, dynamical decoherence typically yields a decay rate,
Gdec

p � 100 kHz (refs 29–31). By gapping the dangling vortices
associated with the edge, one can further suppress the noise
spectral density of the bath and hence Gdec

p . Both decoherence
rates are considerably smaller than those associated with current
state of the art superconducting quantum channels32–34. With an
edge velocity, v¼DS=p � 104 m s� 1, the wavepacket’s edge

traversal time (for ‘ � 1 mm) is tB 0.1 ms, several orders of
magnitude smaller than the decoherence induced decay times.

In order to combine this unique pseudo-spin edge-channel
with a long-lived quantum memory, we consider a hybrid
architecture, involving three individual components: a spin-qubit
memory, a pseudo-spin CSLB droplet and a mediating super-
conducting qubit (MSQ), which provides an interface between the
spin memory and the SC-pseudo-spin edge modes35–38. An
important source of infidelity arises from this MSQ interface. In
order to map the quantum information from the spin memory to
the pseudo-spin edge mode, we require the interaction strength
between spin-MSQ to be larger than 1=TMSQ

2 � 1 MHz
(dephasing rate of the SC-qubit). However, the spin-MSQ
coupling, which is naturally provided by the differing magnetic
fields of the two persistent current quantum states of the SC-qubit,
is estimated to be gB 10 kHz35. To overcome this limitation, we
envision using an off-resonant excitation scheme35. Within such a
scheme, a natural optimum arises owing to an interplay between
decoherence of the spin register (Tspin

2 ) and of the MSQ (TMSQ
2 ); in

particular, for an optimal detuning d, one finds a minimal
infidelity, eopt � ðg2TMSQ

2 Tspin
2 Þ

� 3=4. With experimentally
accessible parameters, TMSQ

2 ¼ 1ms and Tspin
2 ¼ 10–100 ms, the

optimized detuning becomes doptE1 MHz and yields eopt{1%
(refs 10,35).

In addition, a channel composed from actual interacting spins
can also be envisioned. Advances in atom-by-atom material
design provide a promising avenue for the generation of complex
atomic surface spin patterns39,40. Furthermore, tremendous
progress in ion implantation suggests the possibility of
fabricating lattice arrays of electronic spins as the basis for an
in situ spin liquid41,42. One potential advantage of such an
approach is the ability to harness the long coherence times
associated with single-spin qubits9,10; moreover, directly using
solid-state spins also enables the manipulation, transfer and
processing of quantum information usng the same fundamental
hardware43.

The search for novel topological phases represents one of the
most exciting challenges in many-body physics; indeed, this
challenge has led to a widespread effort to experimentally identify
or engineer systems exhibiting exotic topological order. One of
the prototypes of such order is provided by the CSLB phase of the
Kitaev honeycomb model; although such chiral spin liquid phases
have yet to be experimentally implemented, several realistic
approaches towards their realization have been envisioned.
For example, the realization of Kitaev’s gapped B phase is
currently being considered in systems ranging from ultra-cold
atoms44,45 to polar molecules46,47. However, although recent
experiments have demonstrated the ability to control ensembles
containing tens of qubits48–50, such mesoscopic systems are
insufficient in size to support the existence of several well-
separated quasiparticles, a crucial prerequisite to demonstrate the
non-abelian braiding essential for topological quantum
computing6,12. By contrast, these smaller systems represent
ideal candidates to demonstrate TPST and hence, the existence
of a chiral fermion edge—another hallmark of the CSLB phase.

Moreover, our proposed technique can also be used to directly
characterize spin liquid states via passive spectroscopy of the
droplet edge. By observing the splitting-dependent relaxation of
the spin-qubit probe, one could map the energy spacing between
the chiral edge modes. In addition, asymmetries in correlation
measurements provide a direct indication of chirality. In this case,
by gradually altering the physical distance separating two spin-
qubit probes, one could characterize the timescale of incoherent
interactions between the remote registers. Asymmetry in this
timescale, dependent on the direction in which the qubits are
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Figure 5 | Schematic representation of the various forms of edge

decoherence. Type I spin operators correspond to non-vortex-inducing

decoherence and can affect TPST only by annihilating the TPST fermion

(teal star), a process suppressed by e�DS=kBT , where DS represents the

detuning of the spin registers and hence, also the energy of the injected

quasiparticle. Type II–IV spin operators create vortices (circular arrow) in

edge plaquettes. Once a vortex is created at any edge site, it can scatter the

travelling TPST fermion, leading to the decoherence being enhanced by ‘

(the droplet’s linear dimension). In addition to creating vortices, type II–IV

spin operators also create un-gapped edge fermions (gold star), which we

assume does not affect TPST, as quasiparticle interactions have been

shown to be extremely weak.
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separated provides a strong indication of the existence of a chiral
edge and would enable direct evaluation of the velocity associated
with the edge dispersion. Alternatively, one could also imagine
holding the spin qubits fixed and characterizing asymmetries
associated with L-to-R versus R-to-L TPST. These considerations
imply that spin-qubit probes can provide a potential tool for
exploring the properties of natural spin liquid candidates in both
organic and inorganic insulators15,51–53.

Methods
Spin-edge coupling and dangling vortices. There are two types of excitations on
the edge: Majorana fermions and Z2 vortices17. As the bulk phase is gapped, all
static perturbations are irrelevant from a renormalization group point of view,
with the low-energy effective edge theory remaining unchanged. Indeed, the
topology of the bulk guarantees the existence of gapless chiral Majorana edge
modes, as described by equation (8)20.

Generically, all vortices are gapped; however, details of the lattice edge can
lead to the existence of decoupled and/or low-energy vortices. Although the
Hamiltonian in equation (8) does not capture these degrees of freedom, the
presence of these additional states in the low-energy Hilbert space cannot be
ignored. Indeed, the degeneracy of the exactly solved model follows from the
presence of zero-energy dangling vortices formed by pairs of dangling Majoranas,
as depicted in Supplementary Fig. S1. Away from the injection point: (1) zero
energy vortices are decoupled and hence irrelevant to TPST, (2) low-energy
vortices scatter only weakly and (3) high-energy vortices are suppressed by
temperature. The presence of a low-energy vortex degree of freedom at the
injection point is critical to enable spin-edge coupling, which occurs at a
dangling spin. Crucially, this dangling spin contains a decoupled, dangling
Majorana operator g3

a (Supplementary Fig. S1). Keeping track of this mode
in the low-energy Hilbert space allows us to couple via
Hc ¼ v

R
dxgðxÞði@ÞgðxÞ� DS=2ð Þsz þ igsxgð0Þgdecoupled.

This is the continuum formulation of the microscopic coupling illustrated
earlier. To further elucidate the importance of the vortex degree of freedom at the
injection point, we consider three possibilities. First, in the case when the dangling
injection Majorana is completely decoupled, the injection vortex (corresponding to
the flipped Ui,j at the injection point) is zero energy and the procedure for TPST
remains identical. Second, in the case when the injection Majorana is weakly
interacting with a single nearby Majorana (respecting the interaction symmetry),
the injection vortex is low energy. In this case, the splitting of the spin register will
need to be retuned to account for the creation of this low-energy vortex and TPST
will then naturally create both a fermion and an injection vortex. Crucially,
tunnelling of the injection vortex into the bulk will be energetically disallowed as
Dinjection

v � Dbulk
v . Problems only arise in the third case, when the injection

Majorana is interacting strongly (order k) with a single nearby Majorana, and the
injection vortex is hence high energy. In this case, spin-edge coupling will create an
injection vortex, which can diffuse into the bulk; thus, upon the return of the
travelling fermion, the injection vortex may no longer be localized near the
injection point, causing dephasing when the quantum information is recaptured.

Suppressed interactions on the chiral edge. Here, we consider the role of
interactions between edge modes. The fidelity of topological state transfer
will be dependent on these interactions as they induce decay of the Majorana
quasiparticles. Here, we begin by estimating the lifetime of such excitations in the
continuum edge setting by taking into account the leading order interaction term.
We consider, at T¼ 0, the situation where we tunnel a single-quasiparticle exci-
tation into the chiral edge from an associated spin register. The Hamiltonian
characterizing the Majorana edge and its leading order interaction is H¼HeþH0e.

To evaluate the interaction induced decay rate of the quasiparticles, we use
Fermi’s golden rule and consider the relevant interaction matrix elements coupling
an incoming excitation gp|OS with three outgoing (decayed) excitations
gp1

gp2
gp3
jOi. The associated decay rate takes the form,

G¼ 2p
Z

dp1

2p
dp2

2p
dp3

2p
j hO j g� p1

g� p2
g� p3

H0egp jOi j 2

�dðep � ep1 � ep2 � ep3 Þ
ð12Þ

where the d-function imposes energy conservation and the integrals are 1D,
because the quasiparticle is confined to the droplet edge. To evaluate the decay
rate, we begin by considering the interaction matrix element,

M¼ l
Z

dk1

2p
dk2

2p
dk3

2p
dk4

2p
k2k2

3k3
4ð2pÞ

�dðk1 þ k2 þ k3 þ k4Þhg� p1
g� p2

g� p3
gk1

gk2
gk3

gk4
gpi

ð13Þ

where we have represented the interaction Hamiltonian in momentum space; by
using Wick’s theorem, we can contract the matrix element into a function of two
point Majorana correlators. The only terms from this contraction that contribute
are connected terms of the form hg� p1

gk1
ihg� p2

gk2
ihg� p3

gk3
ihgk4

gpi and such

terms yield GB l2p13/n. The leading order temperature correction in the limit
|np|c kT is obtained from a Sommerfeld-type expansion54 and yields
equation (10).
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