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Abstract
We show that the singlet fraction ps and total magnetisation (or polarisation) m can bound the
minimum concurrence in an ensemble of spins. We identify p m1 2s

2( ) as a sufficient and
tight condition for bipartite entanglement. Our proof makes no assumptions about the state of the
system or symmetry of the particles, and can therefore be used as a witness for spin entanglement
between fermions. We discuss the implications for recent experiments in which spin correlations
were observed, and the prospect to study entanglement dynamics in the demagnetisation of a
cold Fermi gas.
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1. Introduction

Spin correlations have recently been observed in cold fer-
mionic atoms as signatures of pairing, magnetism, and
interaction strength [1–3]. It is interesting to ask if the
observed correlations require pairwise entanglement. Since
typical experimental samples contain thousands of atoms, full
tomography is inaccessible; instead, one must find an entan-
glement witness based on a reduced set of measurements
[4, 5]. A commonly explored approach has been to measure
spin squeezing [6–12], however this approach is mainly
limited to symmetric states or indistinguishable particles [6–
8], and thus inapplicable to spin mixtures of fermions.

An alternate characterisation may come from the degree
of polarisation (or magnetisation) m, and the spin-singlet
fraction ps of the ensemble (see section 2 for precise defini-
tions). The singlet state plays a key role in the physics of
ultracold fermions, since a singlet spin wave function is
required for s-wave interactions, which are the only interac-
tions not suppressed at low energy by a centrifugal barrier.
For spin mixtures near a Feshbach resonance [13], the pairing
fraction can be measured by an adiabatic rapid passage that
projects interacting pairs onto molecular dimers [14–16]. This
enables direct measurement of ps in an ensemble. Singlet
fraction is also proportional to the s-wave contact [2, 17–25],

and singlet pairs in an optical superlattice can also be mapped
or projected onto excited motional states [1, 26–31].

It is well known that p 1 2s indicates pairwise
entanglement in unpolarised (m= 0) ensembles [32]. The
existence of a threshold is intuitive, since spin singlets are
antisymmetric Bell states. Here we assume both m and ps of
an ensemble are measured, but make no assumptions about
the form of the reduced two-body density operator ABˆ , which
has 15 degrees of freedom.

We find that the concurrence of the ensemble can be
bounded:

p p mmax 1 , 0 . 1s s
2 2[ ( ) ] ( )

Concurrence [33] is a non-negative number characterising the
entanglement of two spin-1/2 systems, with a positive value
implying entanglement. Thus equation (1) also delineates a
bound on the singlet fraction of an arbitrary two-body state
that is a sufficient and tight condition for its entanglement,
namely

p
m1

2
. 2s

2
( )

This ‘singlet bound’ is an extension of the Werner bound to
partially polarised (m 0) ensembles, where p 1 2s is
sufficient but is not a tight bound. Our proof makes no
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assumptions about the state and therefore is a condition for
bipartite entanglement in any ensemble of spins. Thus,
equation (1) can elucidate the nature of spin correlations in
recent experiments with interacting ensembles of spin-half
fermions, even in states far from equilibrium.

2. One- and two-body observables

The spin state of pairs in a spin-1/2 ensemble can be
described using the antisymmetric singlet state s0∣

2(∣ ∣ ) and the symmetric triplet states t0∣
2(∣ ∣ ) , t1∣ ∣ , and t 1∣ ∣ .

These form an orthonormal set of basis states with well
defined angular momentum quantum numbers S S, z∣ . The
most general state can be written

*

p q t

q t p t t

s s s

s ,
3

AB

i
i i

i i
i j

ij i j

s 0 0
0, 1

0

0
, 0, 1

ˆ ∣ ∣ ( ∣ ∣

∣ ∣) ( ∣ ∣)
( ){ }

{ }

where the populations are normalised to Tr 1AB[ ˆ ] , and ps
is the singlet fraction.

The magnetisation is m Sm m m, , Trx y z
AB( ) [ ˆ ˆ ],

where S 2A Bˆ ( ˆ ˆ ) and A B,ˆ are the usual Pauli spin
operators. The reduced one-body states (e.g., TrA B

ABˆ ˆ )
are completely defined by a Bloch vector v:

vI 2 2A B A B, ,ˆ ˆ · ˆ , in which Î is the identity operator.

Since m v vA B
1

2

1

2
,

m v v v v2 cos , 4A B A B
2 1

4
2 2( ) ( )

where β is the angle between the two Bloch vectors,
and mm ∣ ∣.

In the problem we are considering, only the ensemble
observables m and ps are measured, not vA, vB, or β. One
simple relation between m and ps is given by the normal-
isation of probability:

p m1 . 5s ( )
This can be shown by noting that m p pz 11 1 1 and
p p 1i iis , from which the singlet fraction is bounded
by p m p1 zs 00∣ ∣ . Since m mz∣ ∣ , equation (5)
follows.

3. Unentangled spins

Let us start by finding the singlet fraction of the separable
state AB A Bˆ ˆ ˆ where Aˆ and Bˆ can be different mixed
states. Since we are seeking a relation between two rota-
tionally invariant quantities, m and ps, we are free to choose
the coordinate system, and align Aˆ along the z axis in Bloch
space. Then p pA

A A A A A Aˆ ∣ ∣ ∣ ∣, whereas
Bˆ remains arbitrary, and we write it as c i jB

ij ij B Bˆ ∣ ∣
where i j, ,{ }. The singlet fraction is

p p c p c . 6A As
1

2

1

2
( )

In terms of the Bloch vectors, p v1 2A A( ) and
p v1 2A A( ) , whereas c v1 cos 2B( ) and
c v1 cos 2B( ) , thus

p v v1 cos . 7A Bs
1

4
( ) ( )

Equation (7) has a simple interpretation for two pure states:
when the first spin is along the z axis of the Bloch sphere,
the antiparallel (spin-down) fraction of the second spin is
equally split between singlets and triplet zeros [34].

For an ensemble of unentangled qubits, each of which is
in the same unknown mixed state, Gisin noted that
p m1 4s

2( ) , and proposed measuring ps as a more
efficient determination of m than measuring m [35]. We
recover this result from equation (7) with vA=vB and 0.
However for arbitrary vA or vB, we can only bound ps: elim-
inating β, with equation (4),

p m v v
m

1 1 1
1

2
, 8A Bs

1

2
2 1

4
2 2

2( )( ) ( )

where the inequality holds because v 1A∣ ∣ and v 1B∣ ∣ . Note
that separable pure (v v 1A B ) states are examples of non-
entangled states on the line p m1 2s

2( ) , which
demonstrates the tightness of equation (2). (If however
magnetisation is known only along z, but the full magnetis-
ation possibly lies along another direction, the singlet bound
p m1 2zs

2( ) is sufficient but no longer tight.)

We generalise the inequality in equation (8) to all non-
entangled states by considering a mixture of separable states
i.e. PAB

k k k
ABˆ ˆ where Pk is the probability of

k
AB

k
A

k
Bˆ ˆ ˆ . The singlet fraction psk of each k

ABˆ is still
bounded by equation (8), thus

p P p
P m m1

2

1

2
9

k
k k

k k k
s s

2 2
( )

since m P mk k k
2 2. Hence if the two-body state is non-

entangled i.e. PAB
k k k

A
k
Bˆ ˆ ˆ , then p m1 2s

2( )
holds.

4. Concurrence of entangled states

The contrapositive must also be true: if p m1 2s
2( ) ,

then ABˆ is entangled. In fact, we find the concurrence [33] of
ABˆ can be bounded using ps and m, without any additional

assumptions.
First, we define a ‘spun state’ as the state ABˆ averaged

uniformly over local rotations about the z axis,
U U Uz z

A
z
B( ) ( ) ( ):

U U
1

2
d . 10AB

z
AB

z
0

2
ˆ ˆ ( ) ˆ ˆ ( ) ( )†

This transformation eliminates coherences between states in
ABˆ with different angular momentum quantum number Sz,

since U Sexp iz z
ˆ ( ) [ ˆ ]. Populations and coherence between

2
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s0∣ and t0∣ are unaffected, leaving

*p q t q t

p t t

s s s s

11

AB

i
ii i i

s 0 0 0 0 0 0 0 0

0, 1

ˆ ∣ ∣ ∣ ∣ ∣ ∣
( ∣ ∣) ( )

{ }

which now has only six degrees of freedom. Crucially,
because rotation can be implemented using local operations
and classical communication, the spun state is at most as
entangled as the unspun state i.e. AB AB( ˆ ) ( ˆ ) [36].

Next, we constrain the state to have polarisation m.
Choosing the z axis along the measured direction of m,

p a t t c t

c t
b m

t t

b m
t t

s s e s

e s
2

2
, 12

AB
s 0 0 0 0

i
0 0

i
0 0 1 1

1 1

ˆ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ( )

where the normalised populations are p a b 1s and
the coherence is c aps with 0, 1[ ].

Finally, we explicitly compute the concurrence of
ABˆ . The eigenvalues of the matrix ⎡⎣R ABˆ

⎤⎦AB AB
1 2

ˆ ˆ , where *AB
y y

AB
y yˆ ( ) ˆ ( )

is the ‘spin-flipped’ state, are

⎡⎣
⎤⎦

a p c

a p c c ap

1

2
2 cos 2

2 cos 2 4 ,

13

1,2
2

s
2 2

2
s
2 2 2 2

s
2

1 2
( ) ( )

( )
b m . 143 4

1

2
2 2 ( )

The concurrence is then

p a c

b m

max 0,

max 0, 4 sin

,

15

AB
1 2 3 4

s
2 2 2

2 2

( ˆ ) [ ]
[ ( )

]

( )

which is nonzero when

⎛
⎝⎜

⎞
⎠⎟p

a m

a a

1

2

1 2

1 2 2 sin
. 16s

2

2 2
( )

Since AB AB( ˆ ) ( ˆ ), equation (16) provides a general
bound on the singlet fraction for the entanglement of any ABˆ
with magnetisation m, triplet population a, and coherence c.
With only the observables ps and m, this yields a sufficient
condition for entanglement:

⎡
⎣⎢

⎤
⎦⎥p

a m

a a

m
sup

1

2

1 2

1 2 2 sin

1

2
. 17

a
s

, ,

2

2

2
( )

With a=0 (which implies c= 0) and p m1 2s
2( ) , we

see that equation (12) reduces to separable pure states, which
fulfils equation (8) and saturates the bound. Another special
case is the Werner state a b p2 1 3s( ) , m=0, and
c=0, for which equation (16) becomes p 1 2s .

The singlet bound found here (equation (2)) improves
upon the generalised witness of [37], which when applied to

ABˆ with a=0, yields the sufficient condi-

tion p 1 1 3 3s
2( ) .

The bound can be generalised to a threshold for finite
concurrence, knowing only m and ps, by noting that the
minimum of equation (15) occurs when a=0. Along with
the constraint of a normalised probability, p b 1s , this
gives equation (1). Solving for ps, this gives a tight and suf-
ficient condition for ABˆ having at least concurrence ,
namely

p
m

m
1

2 1
and 1 , 18s

2 2

( )
( )

where equation (2) is now found from the condition 0.
Equations (1) and (18) are the central results of our work.

We verify these relations by generating random mixed
states that span the ps and m space, and computing their
concurrence. Each point in figure 1 corresponds to one of five
thousand random spun mixed states. The blue squares have

0AB( ˆ ) and are not entangled while green circles have
0AB( ˆ ) and are entangled. All points lie within the

physical limit, equation (5). The absence of non-entangled
states above the singlet bound demonstrates that equation (2)
is a sufficient condition for entanglement of ABˆ , while the
existence of non-entangled states immediately beneath the
bound demonstrates the tightness of the condition. Note that
there are also entangled states below the singlet bound, as it is
not a necessary condition for entanglement. Figure 1 also
shows contour lines of minimum determined from a larger
set of random matrices. The locus of points with at least

Figure 1. Each circle in singlet fraction ps versus magnetisation m
space is a randomly generated state ABˆ described by equation (11).
Blue squares have 0, while green circles have 0. Note that
there are blue squares immediately beneath the singlet bound
equation (2) while there are none above, evidence that the bound is a
tight and sufficient condition for entanglement. About the singlet
bound, contour lines of give the minimum concurrence (indicated
by the colour scale) of a state with a given ps and m. For a given ,
the line of minimum ps follows equation (18) from p 1 2s ( )
at m=0 to ps at m 1 . Several values are given along
physical limit (equation (5)).
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concurrence or greater is bounded by equations (18)
and (5).

5. Discussion

Several recent experimental works can be re-interpreted in
light of our results. We will consider three measurements
sensitive to ps: mapping onto vibrational states in a super-
lattice, sweep-projection onto singlet dimers, and measuring
the s-wave contact. We focus on experiments with fermions,
even though our results apply to mixtures with any exchange
statistics.

Controlled collisions in optical superlattices have been
used both to create and to detect pairwise entanglement
[1, 26–31]. However, when the effect of uncontrolled colli-
sions are measured with the same technique, the efficiency of
observing ps may be hampered by a randomised choice of
pairs, if a simple lattice is pairwise projected into the super-
lattice. For instance, Greif et al [1] find that in a dimerised
lattice, the singlet fraction of fermion pairs is at least
ps=0.31. This was an effective probe of spin correlations,
but insufficient to prove entanglement by equation (2).

The association of atomic fermions into s-wave pairs also
requires an initially singlet spin state. Thus efficiency of
association is a lower bound on ps. For example, sweeping the
magnetic field across a Feshbach resonance in experiments
with unpolarised Fermi gases of 40K and 6Li, as high as
85% is observed [16, 38, 39]. This surpasses the 50% upper
limit discussed in [15, 40] which is also seen as an apparent
limit in some experiments [14, 41]. We interpret this limit as
ps=0.5, which is the maximum singlet fraction of a non-
entangled state: experiments (and theoretical treatments)
finding 0.5 use separable states, whereas experiments
observing 0.5 allow multiple collisions to occur before
or during the magnetic field ramp. In some conditions, these
collisions have produced pairwise entanglement. From
equation (1), we can infer that the concurrence was 0.7
for p 0.85s in [16, 38, 39].

Pairwise-entangled states of an unpolarised Fermi gas are
not surprising: in a weakly interacting Fermi s-wave super-
fluid, each spin-up fermion is (monogamously) entangled
with a spin-down partner. However entanglement dynamics
in a polarised gas is an active topic of discussion. Calculations
of the s-wave contact in a polarised Fermi gas [2, 42] have
shown that m1 2 at high temperature, and m1
at low temperature. Since reflects interaction strength,
which in turn requires spin-singlet wave functions between
fermions, this is similar to a study of ps versus m. The con-
version of to an absolute value of ps requires many-body
theory and precise knowledge of density, temperature, and
interaction strength. For this reason the spin correlations
found by Bardon et al [2] using and m, for instance, cannot
easily be classified using the singlet bound. More clear would
be to study demagnetisation dynamics using association
efficiency . One would anticipate a temperature threshold,
below which the gas evolves from a separable state to a
pairwise-entangled state through random collisions.

In sum, we have established a sufficient and tight con-
dition for bipartite entanglement between spin degrees of
freedom in an arbitrary system of spins, without any
assumption of equilibrium, population balance, or symmetry.
We find that the concurrence can be bounded simply by the
magnetisation and singlet fraction, through equation (1). This
enables the distinction between classical spin correlations and
necessarily quantum correlations in ensembles of ultracold
fermions.
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