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We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for
coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited
by the wavelength of radiation and can, in principle, approach a few nanometers. The selectivity is enabled
by the nonlinear atomic response, under the conditions of electromagnetically induced transparency, to a
control beam with intensity vanishing at a certain location. Practical performance of this technique and its
potential applications to quantum information science with cold atoms, ions, and solid-state qubits are
discussed.
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Coherent optical fields provide a powerful tool for co-
herent manipulation of a wide variety of quantum systems.
Examples range from optical pumping, cooling, and quan-
tum control of isolated atoms [1,2] and ions [3] to manipu-
lation of individual electronic and nuclear spins in solid
state [4,5]. However, diffraction sets a fraction of the
optical wavelength � as the fundamental limit to the size
of the focal spot of light [6]. This prohibits high-fidelity
addressing of individual identical atoms if they are sepa-
rated by a distance of order � or less. In this Letter, we
propose a method for coherent optical far-field manipula-
tion of quantum systems with a resolution that is not
limited by the wavelength of radiation and can, in princi-
ple, approach a few nanometers.

Our method for coherent subwavelength manipulation is
based on the nonlinear atomic response produced by so-
called dark resonances [7]. The main idea can be under-
stood using the three-state model atom shown in Fig. 1(a).
Consider two such atoms, atom 1 and atom 2, positioned
along the x-axis at x � 0 and x � d, respectively, as shown
in Fig. 1(b). Assume that they are prepared in the ground
state jgi and then illuminated by the probe field with
wavelength � and Rabi frequency �. For d � �, one
cannot focus the probe on atom 1 without affecting atom
2 and other neighboring atoms. Let us suppose that � is
uniform over the distance d. In addition, prior to turning on
the probe, we turn on a two-photon-resonant spatially
varying control field (e.g., a standing wave) of wavelength
�0 � 2�=k0 that vanishes at x � 0 (i.e., has a node) and has
Rabi frequency �c�x� � �0k

0x for k0x � 1. Destructive
interference of excitation pathways from jgi and jri up to
jei ensures that the so-called dark state jdark�x�i �
��c�x�jgi ��jri	= �������������������������

�2
c�x� 
�2

p
is decoupled from both

optical fields [7]. It is the sharp nonlinear dependence of
jdark�x�i on �c�x� that allows for subwavelength address-
ability. In particular, for atom 1 at x � 0, jdark�x�i � �jri,
so that atom 1 prepared in state jgi responds to the probe
light in the usual way. On the other hand, for all x such that
�c�x� � �, jdark�x�i � jgi. The space interval around
x � 0, in which the ground state jgi is not dark, therefore,

has width ��=��0k0� and can thus be made arbitrarily
small by increasing the overall intensity of the control
(/�2

0). In particular, atom 2 at x � d prepared in jgi will
not respond to the probe provided �0 � �=�k0d�.

This selective subwavelength addressability can be used
in a variety of ways. For example, one can accomplish
selective state manipulation of proximally spaced qubits
via spatially selective stimulated Raman transitions. In
combination with dipole-dipole interactions, our technique
can be used, for d � �, to generate an efficient two-qubit
gate between pairs of atoms. One can implement selective
fluorescence detection [3] of the internal state of an atom if
jgi � jei corresponds to a cycling transition (this is pos-
sible either if jri is above jei or if spontaneous emission
from jei into jri is much slower than into jgi). Finally, one
can perform spatially selective optical pumping of individ-
ual atoms. Addressability with d � � will be important for
arrays of quantum dots [5] or optically active defects [4] in
solid state, where d � � is often needed to achieve cou-
pling [8]. Moreover, our technique enables highly desirable
high-fidelity micron-scale manipulation of atoms in optical
lattices with d � �=2 [1] and ions in linear Paul traps with
d < 5 �m [3] (for ions, small d is desirable as it accom-
panies large vibrational frequencies [3]). Below, we ana-
lyze in detail selective coherent state manipulation and
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FIG. 1 (color online). (a) 3-level atom prepared in state jgi and
coupled at two-photon resonance to a spatially uniform probe
field with Rabi frequency � and a spatially varying control field
with Rabi frequency �c�x�. (b) Schematic of the setup: atom 1,
at a node of the control field, responds to the probe, while atom
2, a distance d away, is subject to a large control field �c�d� �
� and does not respond to the probe.
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then estimate manipulation errors using realistic experi-
mental parameters.

Before proceeding, we note important prior work. Our
approach is an extension of incoherent nonlinear tech-
niques used in atom lithography [9] and biological imaging
[10]. The nonlinear saturation of EIT response that forms
the basis of the present work has already been used for the
realization of stationary pulses of light [11] and has been
suggested for achieving subwavelength localization of an
atom in a standing wave ([12,13] and references therein).
Finally, alternative approaches to solving the addressablity
problem exist that use Bessel probe beams with nodes on
all but one atom [14], place atoms into traps separated by
more than � [15], and resolve closely spaced atoms spec-
troscopically [16] by applying spatially varying magnetic
fields [17] or light shifts [18].

As a specific example, we now analyze in detail a
spatially selective single-qubit phase gate, j0i ! j0i, j1i !
ei�j1i, on a qubit encoded in stable atomic states j0i and
j1i of one atom in the presence of a proximal neighbor
(Fig. 2). Consider atoms 1 and 2 that have a tripod con-
figuration shown in Fig. 2(a). We assume that the optical
transitions from the metastable states j0i, j1i, and jri up to
jei are separately addressable via polarization or frequency
selectivity. By turning on a probe field with Rabi frequency
��, wavelength � � 2�=k, and detuning � � � for a
time � / �=�2, we would like to apply a �-phase on state
j1i of qubit 1 via the ac Stark effect. To minimize errors
discussed below, we turn � on and off not abruptly but
adiabatically (e.g., a linear ramp up from zero immediately
followed by a linear ramp down to zero). To shut off the
phase shift on the nearby qubit 2, we apply, at two-photon
resonance with �, a spatially varying control field with
Rabi frequency �c�x� � �0k

0x for k0x � 1. We assume
the control is turned on before and turned off after the
probe pulse. For the moment, we treat atoms as point
particles and return to the question of finite extent of the
atomic wave packets below.

The gate error on atom 1 due to spontaneous emission
can be estimated as ���e � ����=��2 � �=�, where �i
is the population of state jii and where we assume for
simplicity that all transitions are radiatively broadened
and that the decay rate of jei is 2�. To investigate the
effect on atom 2, we define dark and bright states for this
atom as jDi � ��cj1i ��jri�= ~� and jBi � ��j1i 


�cjri�= ~�, where ~� � ��������������������
�2

c 
�2
p

and �c � �c�x � d�
[see Fig. 2(b)]. Since jDi � j1i at the beginning and at the
end of the probe pulse (i.e., when � � 0), the phase gate
will be turned off if atom 2 remains in a superposition of j0i
and jDi without any phase accumulation on jDi or popu-
lation loss into jBi. This will be the case provided the probe
field is turned on and off adiabatically as compared with
jBi � jDi energy splitting, which is equal to the Stark shift
�S � ~�2=� of jBi. In the limit �c � �, which we will
assume from now on, the nonadiabatic coupling between
jDi and jBi has an effective Rabi frequency �NA �
�=�T�c� [19] giving population loss from the dark state
into the bright state of order �B � ��NA=�S�2 � ��=�c�6
and hence an error of the same order. The errors due to the
Stark shift �2

NA=�S of jDi and due to spontaneous emis-
sion are smaller than ��=�c�6 and �=�, respectively.

In the simplest case, these are the dominant sources of
error, so that the total error is

 Pe � ��=�� 
 ��=�c�6: (1)

Plugging in �2 ��=� and minimizing with respect to �
gives �� ���3�6

c�1=4 and Pe � ��=���2
c�	3=4, which can

be made arbitrarily small by increasing control intensity.
However, other sources of error exist. For d��, dipole-

dipole interactions and cooperative decay effects may be-
come important [20]. Cooperative decay will not qualita-
tively change the errors since the desired evolution is close
to unitary. Assuming that we have only two atoms and that
d � �, taking the axis of quantization to coincide with the
x-axis, the dipole-dipole Hamiltonian can be written as
Hdd�� ~�1  ~�2�3� ~�1  x̂�� ~�2  x̂�	=d3,where ~�i is the elec-
tric dipole operator of the ith atom. Since most of the
population will stay in j0i and j1i, the dipole-dipole inter-
actions involving state jri can be ignored. Then, provided
j0i � jei and j1i � jei have different polarizations or suf-
ficient frequency difference, Hdd � �g0�j0eihe0j

je0ih0ej� � g1�j1eihe1j 
 je1ih1ej�, where j	
i denotes
a two-atom state with atom 1 in j	i and atom 2 in j
i
and where g0 and g1 are proportional to g � �=�kd�3 with
proportionality constants that depend on the polarizations
of the transitions. Then a perturbative calculation shows
that dipole-dipole interactions introduce an error
���g=��c��	4 [21].

Additional errors are associated with imperfections in
the control field node and with finite localization of atoms.
If atom 1 was perfectly localized at a single point, a
residual control field at the node [�c�0� � 0] would result
in population ��c�0�=�	2 in the dark state jDi (now de-
fined for atom 1). However, even if �c�0� � 0, atom 1 can
still interact with the control field due to finite extent a0 of
its wave function. Assuming �c�0� & �0k

0a0 [22], the
error due to finite atomic extent (discussed below) will
dominate over ��c�0�=�	2.

To analyze the problem of localization for atoms in
optical lattices and ions in linear Paul traps, we assume
that atom 1 sits in the ground state of a harmonic oscillator
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FIG. 2 (color online). Single-qubit phase gate on atom 1.
(a) Atom 1 [�c�0� � 0] or atom 2 [�c�d� � 0]. (b) Atom 2
using basis states fjDi; jBig in place of fj1i; jrig. (c) Schematic of
imperfect localization of atom 1: parabolic trapping potential
mw2x2=2 with three lowest energy levels indicated, ground state
wave packet of width a0, and control field �c�x� � �0k0x.
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potential with frequency ! and, therefore, has spread a0 ��������������������
@=�2m!�p

, where m is the mass of the atom, as shown
schematically in Fig. 2(c). We assume �c�x� � �0k0x �
�ca�ây 
 â�, where �ca � �c�a0� and â is the oscillator
annihilation operator. �c�x� will then couple je; ni and
jr;mi only when n � m� 1, where j	; ni denotes atom
1 in internal state j	i in nth harmonic level. The dominant
error can be estimated by keeping only states j1; 0i, je; 0i,
and jr; 1i. A perturbative calculation shows that the two
limits in which the error is small are (a) a fast limit !� &
1, in which case Pe � ��ca=��2 and (b) the adiabatic limit
!� � 1, ��ca=��2, in which case a small change in the
Stark shift of j1; 0i can be compensated by slightly adjust-
ing � to yield Pe � ��ca=��2=��!�4.

For atom 2 centered at x � d, we have �c�x� �
�0k

0d
�ck
0�x� d�; i.e., the desired coupling �c within

each harmonic level is accompanied by coupling of
strength ��ca between different harmonic levels.
Numerical simulations show that provided �ca < 0:1�c
(which will always hold below), this coupling has an
insignificant effect.

The error budget for the single-qubit phase gate is sum-
marized in Table I. In general, for a given set of experi-
mental parameters, using �2 � �=� to eliminate � in
favor of �, one has to write the total error as the sum of
the errors in Table I and minimize it with respect to �0 and
� (we assume �0=2� � 1 GHz). We will illustrate this
procedure for three systems: ions, solid-state qubits, and
neutral atoms. Since ion and neutral-atom examples will
have d� �, we take �c � �0 for them, while for solid-
state qubits, we take �c � �0k

0d. We take �ca � �0k
0a0,

except for neutral atoms, as discussed below. We note that
stimulated Raman transitions [3], resulting in qubit rota-
tions, can also be treated in exactly the same way, yielding
similar error probabilities. Moreover, this error analysis is
readily extendable to spatially selective qubit measure-
ments and optical pumping, as well as to dipole-dipole
two-qubit gates for qubits separated by d � �.

Several approaches to control field node creation exist.
One or two standing waves can be used to generate planes
or lines, respectively, of zero field with field amplitudes
scaling linearly near the zeros. If one has a regular array of
atoms (e.g., in an optical lattice), arrays of zeros can be
chosen to have spacing incommensurate or commensurate

with atomic spacing, allowing to address single or multiple
atoms, respectively. One can also create control field nodes
using holographic techniques [24], which allow one to
generate single optical vortices (such as in a Laguerre-
Gaussian beam) or an arbitrary diffraction-limited two-
dimensional array of them. For simplicity, we consider
the case when atoms are sensitive only to one polarization
of the control field (e.g., if a magnetic field is applied to
remove degeneracies). Then, the quality of a standing wave
node in this polarization component is determined by the
interference contrast, which is limited by the mismatch
between the amplitudes of this component in the two
interfering waves. On the other hand, in an optical vortex,
if the phase of the desired polarization component picks up
a nonzero multiple of 2� around a closed loop, for topo-
logical reasons this loop must enclose a line (in three
dimensions) where the amplitude of this polarization com-
ponent exactly vanishes (see, e.g., [25]). Furthermore, the
Rabi frequency in an optical vortex rises radially from the
center as j�c�x�j ��0�x=w�l, where w * �0 is the beam
waist and the topological charge l is a positive integer.
Therefore, in some cases, the use of vortices with l > 1
instead of standing waves or l � 1 vortices can improve
the resolution by decreasing the undesired coupling of the
control to atom 1. We will use an l � 2 vortex for the
neutral-atom example, in which case we take �ca �
�0�k0a0�2 in error #2 in Table I.

We first analyze ions in linear Paul traps. We consider
for concreteness 40Ca
 [26] with j0i � j4S1=2; m � 1=2i,
j1i � j4S1=2; m � �1=2i, jei � j4P1=2; m � 1=2i, and
jri � j3D3=2; m � 3=2i. Note that � � 397 nm and �0 �
866 nm are far enough apart to ignore off-resonant cross
coupling. Then, for � � 1 �s, !=2� � 10 MHz, and d �
1–3 �m, errors #1 and #4 from Table I form the dominant
balance, so that Eq. (1) applies and Pe � ��=���2

c�	3=4,
which is �10�4 for �0=2� � 1 GHz [with optimal
�=�2�� � 200 GHz and �=�2�� � 200 MHz]. This and
the next two error estimates are significantly lower than the
errors produced by naive probe focusing.

For solid-state qubits (e.g., Nitrogen-Vacancy color cen-
ters in diamond [27]), we take a0 � 0:5 nm, � � �0 �
700 nm, �=2� � 5 MHz, and � � 1 �s, which, for d
between 100 nm and 20 nm, makes errors #2 and #4
form the dominant balance, so that Pe � �a0=d�3=2 is be-
tween 5� 10�4 and 5� 10�3. For d < 10 nm, �0=2� �
1 GHz is insufficient to suppress the dipole-dipole error
(error #5 in Table I), and the gate fidelity sharply drops.

To analyze atoms in optical lattices, we consider 87Rb
with j0i�j5S1=2;F�2;mF�2i, j1i�j5S1=2;F�1;mF�1i,
jei � j5P1=2; F � 2; mF � 2i, and jri � j4Di. j4Di de-
cays with rate 2�r � 1=�90 ns�; so to reduce the error
��r�r�� ��=�c�2�r� on atom 2 (error #6 in Table I),
we choose short � � 10 ns. For !=2� � 50 kHz and
�0=2� � 1 GHz, errors #2 and #6 form the dominant
balance, so that Pe � ��ca=�c����r�1=2 � 0:01. This error
can be further reduced by tightening the traps for the

TABLE I. Error budget for the single-qubit phase gate.

Error source Error scaling (Pe)

1 decay error on atom 1 �=�
localization error on atom 1:

2 - ions and atoms in fast limit
and solid-state qubits [23]

��ca=��2

3 - ions and atoms in adiabatic limit ��ca=��2=��!�4
4 unitary error on atom 2 ��=�c�6
5 dipole-dipole error �g�=���c�	4
6 jri decay on atom 2 for Rb ��=�c�2�r�

PRL 100, 093005 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
7 MARCH 2008

093005-3



duration of the gate either by increasing the power of or by
decreasing the detuning of the lattice beams.

Our selective addressability technique has several ad-
vantages that may enable it to outperform alternative all-
optical addressability proposals based on the gradient
method [18]. First, the nonlinear response provided by
the dark states may potentially provide our method with
superior error scaling. Second, in the gradient method, the
control field typically couples states that are populated at
some point during the gate. In contrast, in our method, the
control field is small (ideally, vanishing) on the atom that is
being manipulated, while on the neighboring atoms, the
population of level jri (coupled by the control to level jei)
is negligible and becomes smaller as the control power
grows. As a result, in contrast to the gradient method, our
method (1) avoids unwanted forces on atoms due to Stark
shift gradients [and hence prevents unwanted entanglement
of external and internal degrees of freedom] and (2) avoids
excessive spontaneous emission, which may take place if
the control field mixes populated stable states with short-
lived excited states.

We now outline some new avenues opened by the co-
herent selective addressability technique. Although we
discussed in detail only the application of this technique
to selective phase gates (equivalently, Raman transitions),
it has obvious generalizations to geometric gates [28],
fluorescence detection, and optical pumping or shelving,
as well as to the generation (in combination with dipole-
dipole interactions and assuming d � �) of entangling
gates between atoms. In addition to the applications to
atoms in optical lattices, to ions in linear Paul traps, and
to solid-state qubits, our technique may also allow for
single-atom addressability in recently proposed subwave-
length optical lattices [29]. Moreover, a combination of
similar ideas involving dark states and the nonlinear atomic
response can itself be used for creating deep
subwavelength-separated traps and flat-bottom traps.
Finally, better optimization (e.g., using optimal control
theory to shape laser pulses) can further reduce the errors.
Therefore, we expect this technique to be of great value for
fields ranging from quantum computation and quantum
simulation to coherent control, all of which can benefit
from high-fidelity addressability at d & �.
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Note added.— after completing this Letter, we became
aware of related proposals [30–32] to use dark state posi-
tion dependence to achieve subwavelength resolution.
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