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We study the twist defects in the toric code model introduced by Bombin [Phys. Rev. Lett. 105, 030403
(2010)]. Using a generalized two-dimensional Jordan-Wigner transformation and a projective construction, we
show explicitly that twist defects carry unpaired Majorana zero modes. In addition, we propose a quantum
nondemolition measurement scheme of the parity of Majorana modes. Such a scheme provides an alternative
avenue to demonstrate the non-Abelian statistics of Majorana fermions. The braiding operation is simulated by a
nonrepetitive measurement-based approach which removes the uncertainty associated with forced measurements.
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I. INTRODUCTION

Quantum systems exhibiting topological order have stimu-
lated a lot of excitement over the past few decades because
a new paradigm beyond Landau’s symmetry-breaking the-
ory is needed to describe those states [1-3]. In particular,
topology rather than symmetry should be used to characterize
topological states. The existence of topological degeneracy
of ground states makes topological systems a promising
candidate for topological quantum computation (TQC) [1,4]
as such degeneracy depends only on the topology and hence
is robust against local perturbations.

One important example of topological order is the toric code
model [5,6] which is exactly solvable. With local interactions
between spins, the system has topologically degenerate ground
states with long-range entanglement. Local perturbations only
introduce exponentially small splittings of the ground-state
degeneracy, and the ground-state subspace is thus protected
from local probes and possesses a long-range topological
order. Anyons emerge as excitations in the toric code model.
Because fusion of two such anyons has a definite outcome,
these are Abelian anyons and have no computational power if
we want to encode quantum information in the fusion channels.

An interesting variation of the toric code model that
supports non-Abelian anyons was proposed by Bombin [7]
via introducing twist defects into the model; see Ref. [8]
for an algebric theory of such defects. By verifying the
fusion and braiding rules, the twists were shown to mimic
the behavior of more exotic non-Abelian Ising anyons which
can be used to realize the quantum gates of the Clifford group
for TQC [1]. An important distinction was made by You and
Wen [9] that those twists are not intrinsic non-Abelian anyons
themselves since they are not excitations of the Hamiltonian.
Instead, twists are extrinsic defects with projective non-
Abelian statistics [9,10]. With a mean-field treatment, twists
are shown to carry unpaired Majorana fermions [9]. More
recently, the topological entanglement entropy was calculated
to show that twist defects have the same quantum dimension
and fusion rules as Ising anyons [11]. The twists have also
been proposed as qubits for quantum computation in a surface
code implementation to reduce the space-time cost [12].

In this work, we explicitly show the emergence of unpaired
Majorana zero modes associated with the twist defects using
two different approaches: (1) a generalized two-dimensional
(2D) Jordan-Wigner transformation [13-15] and (2) a
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projective construction from a Majorana surface code model.
In addition, we show that the parity operator of two unpaired
Majorana modes is indeed the logical operator defined in
the spin language, which can be used to manipulate the
degenerate states of the corresponding twists. To demonstrate
the non-Abelian statistics of twists through braiding, one
needs to move the twists by changing the Hamiltonian [7].
Here, instead, we want to realize the braiding of Majorana
fermions without actually moving them. Previously, forced
measurements [16,17] have been proposed to mimic braiding
operations and to realize the measurement-only topological
quantum computation scheme. Here we propose a nonrepeti-
tive protocol and show that the measurement-based braiding
can be simulated efficiently using a single cycle of three topo-
logical charge measurements followed by a single logical qubit
Pauli operation. This way, we avoid the uncertainty associated
with forced measurements whose number of measurements is
probabilistically determined and varies from run to run.

Even though signatures of Majorana fermions have been
identified in several spin-orbit coupled materials placed close
to superconductors [18-20], demonstrating the non-Abelian
statistics of Majorana fermions in the condensed matter setting
is still a very challenging task as it requires a combination
of experimental capabilities, including braiding, fusing, and
measuring two Majorana zero modes. We instead show that
it is possible to verify the non-Abelian statistics of Majorana
fermions using the twist defects in the surface code model
[21-24] on a 2D planar lattice. We believe all the required
operations are within experimental reach in the surface code
setup in the near future given recent significant experimental
progress in superconducting circuits [25-27]. Therefore, our
scheme provides an alternative approach to demonstrate the
non-Abelian statistics of Majorana fermions. If supplemented
with a single-qubit /8 gate through the magic state distil-
lation [4,24], the measurement-based braiding of Majorana
fermions can be used for universal quantum computation in
the surface code setting [12].

Here is the outline of the paper. In Sec. II, we first
introduce the toric code model with twist defects and show
explicitly there are unpaired Majorana fermions associated
with the twists. In Sec. III, we show how to demonstrate
the non-Abelian statistics of Majorana fermions using the
twist defects. In particular, we give a detailed account of
the measurement-based braiding of Majorana fermions and
propose a nonrepetitive protocol consisting of a single cycle of
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three charge measurements followed by a single-qubit logical
operation. Finally, we conclude in Sec. IV.

II. UNPAIRED MAJORANA ZERO MODES
FROM TWIST DEFECTS

Because of their exotic non-Abelian statistics, Majorana
fermions [28] have generated tremendous interest in the
condensed matter community and a huge amount of effort
has been devoted to the search of Majorana fermions over the
past few years [29-34]. So far, the majority of the activity has
focused on topological superconductors supporting localized
zero-energy modes [18-20]. However, it has been shown by
Petrova et al. [35,36] that introducing topological defects in the
Abelian phase of the Kitaev honeycomb model [37] provides
an alternative way to generate unpaired Majorana zero modes.
Previously, twist defects in the toric code model are shown
to exhibit Ising anyonlike behavior through either fusion and
braiding rules [9—11] or a mean-field treatment [7]. Here it is
our aim to demonstrate explicitly the emergence of unpaired
Majorana zero modes associated with the twist defects as has
been done in the Kitaev honeycomb model [35,36].

The toric code model was initially introduced by Kitaev [5]
and later reformulated by Wen [6]. To be self-contained, here
we describe the fundamental aspects of the toric code model.
The model is defined on a 2D lattice with spin-1/2 particles
seating on each site, see Fig. 1. We start with the reformulated
Hamiltonian with twist defects introduced by Bombin [7]:

Hrcm = —ZAk, (D
P

where the plaquette operator Ay is a four-body interaction term
between spins living on the corners of the plaquette k£ and is
given by

(%]
(%]

Ay = = X1Z>X3Za. )

1 4

Here X’s and Z’s are the spin-1/2 Pauli operators. For the
plaquette containing a twist defect, the plaquette operator has

to be modified to
24 7 3
X Y = X1Z:X324Y5, 3)
1 ®4
where Y =iXZ.

It is easy to check that all the plaquette operators commute
with each other: Each A; (or A}) shares two spins with
its neighboring plaquettes and anticommutation relations be-
tween different Pauli operators guarantee Ay (or A;) commutes
with them; for all the other plaquettes, Ay (or A, ) simply shares
zero spin with them. This nice property makes the toric code
model exactly solvable. Since A2 = (A;C)2 = 1, each plaquette
operator has two eigenvalues +1. Therefore, the ground-state
(GS) energy corresponds to simultaneously minimizing the
contribution from each plaquette. This leads to the condition
that each A (or A}) takes the eigenvalue +1 and the ground
state is a common eigenstate of all the plaquette operators:
Ar|GS) = |GS) for all k. As summarized in Ref. [9], when the
lattice is placed on a torus, the ground-state degeneracy of the

Al =
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FIG. 1. (Color online) The toric code lattice without (top) and
with twist defects (bottom). In the top panel, e and m charges are
created in pairs by string operators passing through dark and light
plaquettes, respectively. In the bottom panel, an m charge is moved
by applying a string operator and becomes an e charge after moving
around one twist defect.

toric code model follows the general formula of 4 x 2/Nse =N
foraneven x even lattice and 2 x 2NN for an even x odd
or odd x odd lattice. The factor of 4 or 2 happens to be the
number of distinct set of excitations allowed by the underlying
lattice topology. Ny and Npjyq denote the number of sites
and plaquettes, respectively. In contrast, with open boundary
conditions, the ground states support gapless edge modes due
to Majorana fermions [6].

Excitations can be generated by applying spin operators
as shown in Fig. 1. It flips the states of Ay together with A;’s
diagonal neighbor that shares a site with A;. Hence, excitations
are localized on the plaquettes and they are always produced in
pairs with a minimal energy gap of 2. To label the excitations,
one can color the plaquettes into dark and light groups [7]. This
labeling can be done consistently on the lattice for the regions
free of twist defects as shown in the top panel of Fig. 1. Then an
electric charge e (magnetic charge m) is attached to excitations
living in a dark (light) plaquette. Both e and m can be generated
by applying spin operators to flip the plaquette states. Figure 1
shows that connecting those spin flipping operators gives a
string operator having its ends on two plaquettes where the
excitations are generated. Similarly, we can move e and m
charges by applying the string operators. If we keep moving
one of the charges until the two ends of the string operator
meet on the same plaquette again, then the two charges will
then annihilate and the system is back to the ground state. This
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tells us that fusing two e or m charges gives vacuum 1. The
composition of one e charge and one m charge, however, gives
afermion € = e x m. The fermionic nature of € can be verified
by exchanging a composite pair of e x m with another pair of
e x m, which gives rise to a r-phase shift in the wave function.
1, e, m, and € together forms the quantum double model of
Z, [38]. They are Abelian anyons because fusing any two of
them always has a definite outcome. For an even x even lattice
placed on the torus, these four types of charges can be distin-
guished and hence the fourfold degeneracy of the ground state
due to the lattice topology. While for an even x odd or odd x
odd lattice, e becomes m if moved across the boundary and
hence they are no longer distinguishable, as are 1 and €, giving
the twofold topological degeneracy of the ground state [9].

Introducing twist defects provides an alternative approach
to change the ground-state degeneracy. n twist defects will
reduce the number of plaquette Npj,q by 7/2 and increase the
degeneracy by 2"/% for an even x odd or odd x odd lattice. For
an even x even lattice, the introduction of first pair of twists
makes the electric and magnetic charges indistinguishable:
Figure 1 shows that an m charge becomes an e charge after
moving around one twist defect. Therefore, the first pair does
not increase the ground-state degeneracy [9], and hence n twist
defects increase the degeneracy by 2"/2~!. The twist defects
have been shown to behave like Majorana fermions which has
generated quite some interest [7,9—12] mainly because of the
generation of non-Abelian anyons from an Abelian phase. Of
course, caution has to be applied because twist defects are
not intrinsic anyons because they are not part of the excitation
spectrum of the Hamiltonian. Instead, they are extrinsic anyons
with projective non-Abelian statistics [9,10]. In particular, it
has been shown that for the Z, twist defects considered in this
paper, the projective non-Abelian statistics is equivalent to the
ordinary non-Abelian statistics up to an overall phase, but for
general twist defects they can be inequivalent [10]. Here we
show explicitly that twists are indeed associated with unpaired
Majorana zero modes using different techniques.

In this paper, we assume a 2D planar lattice with an
open boundary condition. Since we are only concerned with
the topological degeneracy introduced by the twist defects
(instead of the degeneracy associated with lattice topology),
the boundary condition becomes irrelevant. More importantly,
a 2D planar lattice is more realistic from the experimental
point of view. Hereafter, we will refer to the 2D planar model
as the (planar) surface code model if we are considering a
Hamiltonian or the surface code if we are using a stabilizer
formulation without a Hamiltonian.

A. Jordan-Wigner transformation of the surface code model

To define a Jordan-Wigner transformation on a 2D lattice,
we order the spins in a quasi-1D manner as shown in Fig. 2.
Following the path, we define the following mapping between
the spin operators and Majorana fermions:

X;=Upyj, Zy=Uyf, Yi=ivjy}, &

where U; =[], _; Yy is a nonlocal operator attached to
guarantee that Pauli operators at different sites commute. Here
Jj labels the position of the spin along the Jordan-Wigner path.

J' < j simply means the spin at j’ is ordered before the spin
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FIG. 2. (Color online) Planar surface code lattice with an open
boundary condition. The spins live on the corners of the square lattice.
The dashed blue line shows the ordering of the spin along the Jordan-
Wigner path. The green ovals show one possible representation of the
parity operator of the two twist defects. After multipling the plaquette
operators in the shaded region, the parity operator becomes the one
showing in red circles.

at j on the path. y; and y}’ are Majorana fermion operators
nonlocal in terms of the spin operators

vj = [l_[ Yf']zw ®)
J'<j

vj = [1_[ YJ}XJ» ©6)
J'<i

and they satisfy the anticommutation relationship

it ={poit =2 il =0 @
Now we substitute Eq. (4) into the square plaquette operator
defined in Eq. (2) and obtain
2 33

X
A = O U ). ®
1 4

A =

Depending on the direction of the Jordan-Wigner path, there
are two possible mappings of A. If the path goes from site
1 to 4 and 3 to 2 in a counterclockwise fashion, then Eq. (8)
becomes

Aco = (ivivi)(ivirs). ©
Otherwise, we have
Ao = (it vd) (iv3v7). (10)

Similarly, the pentagon plaquette operator defined in Eq. (3)
can be rewritten as

25583
Ix_ v 7
1 4

= (U?)(Uays) (Usy3) (Uayd ) (ivs'vs), (D)

which reduces to

A, =

!/

o = (ivivid) (ivivs), (12)

4

o = vty (ivivy). (13)
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From Egs. (9)-(13), it is clear that each plaquette operator
consists of the product of two pairwise link terms of a-type (b-
type) Majoranas when the path ordering is counterclockwise
(clockwise). For each site except the twist defects [site 5
in Eq. (11)], both the a-type and b-type Majorana modes
are involved in the plaquette operators because the top two
plaquettes containing the site have an opposite path ordering
of the bottom two plaquettes. However, the twist defects are
special because the Majorana modes associated with them do
not show up in the pentagon plaquette operator. Since the
assignment of a-type (y*) and b-type (y”) Majorana fermions
is arbitrary in Eq. (4), the two path orderings are equivalent
upon exchanging y¢ with y”. Therefore, it is sufficient to
assume the case of clockwise ordering in Eq. (13). In this
case, y+ are involved in the two plaquettes below A, and
ysb becomes an unpaired Majorana (it does not appear in the
Hamiltonian.) Clearly, introducing a twist defect gives rise to
an unpaired Majorana mode in the new representation.

A pair of twists will produce two unpaired Majorana zero
modes which can be used to encode qubit. In Fig. 2, they
correspond to Vlbz and y]bg. The parity operator associated with
these two unpaired Majorana zero modes is given by

P =iyhyy. (14)

Now we want to express P in the spin representation. To
eliminate the contribution from the boundary, we need to
modify the form of the boundary spin operators in the Jordan-
Wigner transformation. Specifically, at sites 14 and 15 (Fig. 2),
we exchange X4 with Y14 and Z;5 with Y5 in Egs. (4)—(6). As
aresult, X4 and Z,s replace Y4 and Y5 in the definition of the
nonlocal operators Uj-15s = (], 4 I/[)X14Z15(]_[j>k>15 Yi).

Using the modified Jordan-Wigner transformation from
Egs. (5) and (6), the parity operator can be rewritten as

P =iZpYi3X14ZsY16Y17Y18X10. (15)

‘We highlight the spin representation of P in green ovals in
Fig. 2. Since each plaquette operator has an eigenvalue of
+1 in the ground state, we can multiple P by the plaquette
operators shaded in dark brown in Fig. 2. We end up with an
equivalent parity operator shown in red circles in Fig. 2,

P =iXY11Y10Z9X20Z19. (16)

Compared to P, P’ is a better representation because it does
not go through the boundary and has a distance of roughly the
separation of the two twist defects. This is also the reason why
we modify the Jordan-Wigner transformation; otherwise, we
will have a term of Z;4 X5 from the boundary in the definition
of P’. 1t is fairly easy to check that P’ commutes with all the
plaquette operators and it cannot be written as the product of
plaquette operators. In fact, if we encode information in the
degeneracy states due to the two twists, then P’ is essentially
the logical Z operator accessing those states.

B. Projective construction from a Majorana surface code model

Inspired by the projective construction due to Wen [6],
here we start with a surface code model of Majorana fermions
[39—41], show there are unpaired Majorana modes at the twist
defects, and then map it to the surface code model of spins via
projection. The model is defined on a 2D planar square lattice
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FIG. 3. (Color online) A Majorana fermion model on a 2D lattice
with twist defects. Each site has four Majorana modes (dots): a, b,
¢, and d. a and ¢ modes form bonds (red) in the horizontal direction,
while b and d modes form bonds (green) in the vertical direction

with four Majorana modes y,*?¢“ placed on each site n. Each

site forms a pairwise bond of Majorana modes with its nearest
neighbors in the form shown in Fig. 3. Basically, y“ and y¢
are paired along horizontal bonds, and y? and y¢ are paired
along vertical bonds. By construction, the Hamiltonian takes
the form

Hyr = _ZAkv (17
%

where Ay is plaquette operator of Majorana modes. For a
square plaquette, it reads

23
Av= b b = (vt (v vs) (v vd) (ivivl®). (18)
1be—ely
For a pentagon plaquette with a twist defect, it reads

A= | N
k —a
y g,

(v vs) rsvs) (ivs ) s vs) (ivs ). (19)
This model is exactly solvable because each link operator
u“m(n =iydy¢ or ub? =iyty? commutes with the Hamilto-
nian. Since each link operator has two eigenvalues of £1, the
ground state is the common eigenstate of all A; operators with
eigenvalue +1.

Note that in Eq. (19), ysh is absent from the pentagon
plaquette operator and it is not involved in the two square
plaquettes below A either. Therefore, ysb is an unpaired
Majorana mode associated with the twist defect. To perform
the mapping to spins, we first define two fermion operators
from the four Majorana modes at each site:

ot vt
2 2
The Hilbert space at site n is spanned by the occupation of

the two fermion modes: |00),, |01),, |10),, and |11),. The
fermion parity of site # is given by

Dy = Y}, Wan — DY} Wpn —

Yon = (20)

D =yiviyivd. @D
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The surface code model of spins can be obtained by projecting
to the subspace of even parity: D, = 1. This reduces the
dimension of each site from four to two. We can map the
allowed states {|00),,|11),} to effective spin states: |f}), =
|00), and [{}), = |11),. Under this projection, the Hamiltonian
described by Egs. (18) and (19) can be rewritten in terms of
the effective spin Pauli operators. For instance, iy{y/|00); =
[11);/4 and i)/l“ylblll)l = 100),/4, therefore iyl"ylh maps to
S7/4. It is straightforward to carry out this mapping and show
that the surface code model of Majorana fermions indeed
reduces to the spin model in Egs. (2) and (3) after projecting
to the even-parity subspace.

For the two unpaired Majorana modes shown in Fig. 3, the
total fermion parity is given by P = iylbzyldg. However, after
the projection, P is no longer a physical operator because
it does not commute with the fermion parity operator D,
and Djg; namely it brings the system out of the even-parity
subspace. A simple cure to this problem is to attach a string
operator Sy, 19 connecting two unpaired Majorana modes. One
possible choice of such a string operator is the product of all
the link operators going from site 12 to site 19,

/b d __ ..ac ac ac bd  ac
P =iyYioSi2,19, Siz10 = Ui 111 10470,049.20420,19-
(22)

This newly defined parity operator commutes with the fermion
parity operator D,. Using the mapping from Majorana
operators to Pauli operators under even-parity constraint,
Eq. (22) reduces to the expression of Eq. (16) obtained using
Jordan-Wigner transformation.

In addition, Majorana zero modes can also be obtained by
first introducing defects into the Kitaev honeycomb model
[35,36] and then taking the perturbation limit to map it to the
surface code model. We defer the details to the Appendix.

III. NON-ABELIAN STATISTICS OF
MAJORANA FERMIONS

In this section, we focus on demonstrating the non-Abelian
statistics of Majorana fermions using the twist defects through
braiding operations. Since introducing the twists requires
surgery of the underlying lattice Hamiltonian, moving twists
would constantly change the Hamiltonian, which is not
favorable from the point of view of experiments. Instead,
we propose to use measurement-based braiding [16,17] to
show the non-Abelian statistics. Our proposal requires only the
parity measurements of a pair of twists. We first demonstrate
how to perform such parity measurements in a surface code
setting. Then we elaborate on the details of measurement-
based braiding. We propose a nonrepetitive protocol consisting
of a single cycle of three parity measurements followed
by a single logical qubit operation which is sufficient to
simulate the braiding operation. This removes the uncertainty
of number of measurements in the forced measurement
scheme [16].

A. Parity measurement of twist defects

All of our previous discussion is based on the Hamiltonian
formulation, and it is still very challenging to engineer the four-
body or five-body plaquette operators in Egs. (2) and (3). Alter-
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Otwists

FIG. 4. (Color online) Measurement of the parity (topological
charge) of two twist defects in the surface code stabilizer setting.
The direct way is to measure simultaneously the Pauli operators (red
circles) making up the parity operator. Another indirect approach is to
create a measurement qubit of two holes by stopping two stabilizers
shaded in dark brown. Moving one of the holes around the twists
encodes the parity in the logical Z, of the measurement qubit (product
of the X’s connecting the two holes). By measuring the logical Z;
before and after moving the hole, the parity of twists can be read out.

natively, one can use the stabilizer formulation in topological
codes [21-24]. In this case, there is no Hamiltonian and each
term of the Hamiltonian is replaced by a stabilizer operator.
The stabilizers can be implemented using a combination of
single-qubit gates and two-qubit controlled-NOT (CNOT) gates
followed by a projective measurement all done with the help of
ancilla qubits; see Fowler et al. [24] for details. In each cycle of
the code, all the stabilizers are measured simultaneously. The
resulting state after a projective measurement is an eigenstate
of all stabilizers with randomly selected eigenvalue of either
+1 or —1. Error detection is done through repeating the
cycle of stabilizer measurements, comparing the measurement
results, and identifying specific errors on particular qubits with
the help of classical matching algorithms.

To demonstrate the non-Abelian statistics of twists, we need
to perform parity measurements frequently. We propose to do
such parity measurements in a stabilizer setting as shown in
Fig. 4 (the ancilla qubits are not shown). The first method
would be to directly measure the parity operator Oyyigs that
is a string of Pauli operators highlighted in red circles in
Fig. 4. For a detailed description of measuring such a string
operator, we refer readers to Sec. XB and Appendix D of
Ref. [24].

A second indirect approach to measure the parity is to
create a measurement logical qubit by stopping measuring
two stabilizers [24,42], shaded in dark brown in Fig. 4. This
creates two holes and generates a four-dimensional degree of
freedom with each hole taking on an eigenvalue of +1 or —1.
We effectively encode a single qubit in this four-dimensional
subspace by defining the logical Z; as the operator connecting
the two holes and logical X as the stabilizer of one of the two
holes. Then we move one of the holes (the top right one in
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(a)

FIG. 5. (Color online) Three different bases of four Majorana
modes. [(a) and (c)] Three different ways to group Majoranas 1 to 4.
[(d) and (f)] The corresponding fermion number states expressed in
fusion tree diagrams.

Fig. 4) around the two twists, forming a loop. This process
performs a CNOT gate between the ancillary qubit and the
qubit encoded in two twists [24,41] which results as

ZL - ZL ® 0twists~ (23)

Therefore, by comparing the outcome of Z; measurement
before and after moving the hole around the twists, we can
read out the qubit encoded in the two twists. Note that
such a measurement is quantum nondemolitional and can be
repeated several times to improve the accuracy of the parity
readout.

B. Basis transformation of Majorana fermions

Now we work out the details of measurement-based
braiding by following the wave-function after each projective
measurement in the Schrodinger picture. Because the scheme
involves measuring the topological charge of anyons in
different bases, a basis transformation between different ways
of grouping Majorana modes is needed. Given a set of four
Majorana zero modes, we have three distinct ways to group
them into two pairs with fermion charge i and j as shown in
Figs. 5(a)-5(c). These basis states can be represented using
fusion tree diagrams shown in Figs. 5(d)-5(f). The Majorana
fermions can be treated as Ising anyons (up to an overall
irrelevant phase factor in the braiding operator). The Ising
anyon model has three types of topological charges: vacuum
1, Ising anyon o, and fermion . The fusion rule of Ising
anyon model [38] is given by

I xI=1,
oxo=1+1Y,

I xo =o,

I xy =4y,
Uxy =1 (24

o XY =o,
Depending on the total fermion parity of the four Majoranas,
the charges i and j further fuse into anyon 5, which is either
vacuum / for even parity or a fermion ¥ for odd parity [38].
The basis transformation can be viewed as changing the
ordering of fusion. This amounts to transforming the fusion
tree diagrams in Figs. 5(d)-5(f) into each other. Such a
transformation is dictated by the F' matrices, R matrices, and
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B matrices as follows:

a b c
V = Z[‘thbt']i.?‘ i
]
d d
a\q
— C .
€

W
o
2]

a b

‘ab

d (25)

where the F, R, and B (=FRF~!) matrices for Ising anyons
are given by [38]

7= i

[Rw]=e—f§[(1, ?} [B:M]=i/—;[_§ _{} 26)

Here the matrices are all in the basis of {/,¥}. [Ffw]m, =
[F$a¢]va = —1. All the other matrix elements are either 1 if
it is allowed by the fusion rules or 0 if not allowed.

We first work with the even-parity subspace, which means
anyon 5 after all the fusions is vacuum 7 in Figs. 5(d)-5(f). As
an example, the steps to transform between the bases (13,24)
and (12,34) are given by

Mathematically, this transformation can be expressed as

i slidae = 3 [Fhal, [Bls ] [Fsal ylonolk)sa, 27)

ty
jk

where |k),;, denotes the wave function of the state after fusing
anyons a and b into a channel with topological charge k. Here
1-4 are Ising anyons o, j is o according to the fusion rules,
and k can be either I or ¥. Plugging in the matrices from
Eq. (26) gives the following result:

[|0)13|0>24:| —y© [|0)12|0)34}
11)1311)24 B D)

© M1 i
Usenn = E[_i 1]' (28)

Repeating the above procedure, we obtain the unitary trans-
formations between (14,23) and (12,34) and between (13,24)
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and (14,23) in the even-parity subspace,

L1 1
(e)
Ugern = ﬁ[_i i]’

@ e -1

Uy = f[l 1l 29)

Similarly, the basis transformation in the odd-parity sub-
space is obtained in the same way as

10013 1)2a | _ U@ [0)12/1)34
[1)13]0)24 B<1201)12|0)34 |’
©) i1 i
Uiz = ﬁ[—i 1:|,

1 . .
(0) l 1
Uiyep = ﬁ[l 1:|’

©) R
Ulscrs = 7[_1 1t (30)
It is straightforward to check that the unitary transformations
satisfy the consistency equation,

(e) _ 710 (e)
U13<—12 - Ul3<—l4U14<—12’

(0) _ g0 (0)
Uiscin = UizcaUnsc o (3D

C. Measurement-based braiding

With the unitary transformations between bases in both
the even-parity and odd-parity subspaces, we are ready to
work out the details of measurement-based braiding (MBB)
in the Schrodinger picture. The measure-only approach to
topological quantum computation was proposed by Bonder-
son et al. [16] to implement the topological gates without
physically braiding the computational anyons. The braiding
operation instead is replaced by a series of quantum non-
demolitional topological charge measurements as shown in
Figs. 6(a)-6(d).

We consider the special case of Ising anyons (Majorana
fermions) only. In our case, the topological charge (fermion-
parity) of each pair of Majorana modes can be measured
using the scheme proposed in Sec. III A. Anyons 3 and 4
are the computational anyons to be exchanged, and 1 and 2
are auxiliary anyons employed to assist MBB. The scheme
works in the following way: One first initialize the two
anyons 1 and 2 in the vacuum state with n(1’2) = 0 as shown
in Fig. 6(a). Then a forced measurement is perform on anyons
1 and 3: If ny3 is not O, then we go back to measure 7,
followed by 73 and repeat until we obtain n3 = 0 [Fig. 6(b)].
Basically, we force anyons 1 and 3 to fuse into the vacuum
sector by repeated measurements. Physically, this procedure
realizes anyonic teleportation of the state encoded in anyon
3 to anyon 2. Similarly, forced measurements are done on
anyons 1 and 4, and 1 and 2 shown in Figs. 6(c) and 6(d),
to have ni4 =0 and n(lé) = 0, respectively. It turns out the
resulting effect is equivalent to a braiding operation on anyons
3 and 4 [16]. Due to the inherent probabilistic nature of forced
measurements, the operation time of each measurement-based
braiding unavoidably varies from run to run. This imposes
difficulties of synchronizing the clock if one wants to use MBB
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(a) (b)

113
o ‘e ‘e
(@)
nyy = 0 2.
(c) 3 (d) 3
> @ ‘e
Nig
(f)
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e
(e) 3 Z 4
: Y
1
2
o

FIG. 6. (Color online) Measurement-based braiding involving
four Majorana modes. (a) The initialization of Majorana 1 and 2
in the vacuum state. [(b)—(d)] Measurements of the fermion number
of Majorana 1 and 3, 1 and 4, and 1 and 2, respectively. (e) Definition
of the single-qubit logical X, Y, and Z operators.

to perform topological gates. Recently, the generic case of all
possible intermediate measurement results is considered [17].
Here it is our aim to study the generic case in detail and
we find that one can perform MBB with a fixed number
of measurements removing the uncertainty associated with
forced measurements.

We assume that after the initialization step in Fig. 6(a), the
state of the four anyons is described by

(W) = 10) 12ler|0)34 + BI1)34]- (32)
Using the unitary transformations between bases in Eqs. (28)—
(30), we can rewrite the initial state in the basis of (13,24),

—in/8

(W@ = eﬁ [cr(10) 1310)24 + £]1)13]1)24)

+ B(10)1311)24 + i[1)13]0)24)]. (33)

After the projective measurement of n;3 in Fig. 6(b), depending
on the outcome the state is

e %10 13[at|0)24 + B1)24],
ie”'¥ 1) 13le|1)24 + B0)2a],
Next, we rewrite |W®)) in the basis of (14,23) and perform

projective measurement of ny4 shown in Fig. 6(c). The
resulting state is

e 715 |0) 14[er]0)23 + BI1)23],
e T 1) ul—al1)2s + Bl0)23],
ie71%|0)14[]0)23 — BI1)23],
ie” T[1) 14l 1)23 + Bl0)23],

ifn;3=0

NAES (34)

ifn|3 = 1

niz=ny=0
|\IJ(¢)) _ ni3 =nyy = 0
np=i=1
ni3=ny =1

(35)
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where i = 1 — n. Finally, we transform |¥(©) into the basis
of (12,34) and carry out the measurement of ”(1];) in Fig. 6(d).
Up to an overall phase factor, the final state can be grouped as

)

[0)12[2|0)34 +iB[1)34], n13=n14, ny’ =0
@) = 10)12[]0)34 — iBI1)3a],  miz #nig, 0l = O.
[Dplic|1)z4 + Bl0)3al, niz =nyg, n(lé) =1
D iliells — B0)sl,  mis # g, 0y =1
(36)

A close look at the final state tells us that if we apply an
operator P as defined below to the final state, it is the result of
a braiding operation on the initial state

PIw @) = Ry |W@), (37)

where 1§34 =1+ y4y3)/ﬁ and y3 4 are ghe Majorana op-
erators of anyons 3 and 4. The operator P depends on the
measurement outcomes and is given by

i, ni3 = ni4, n(]];)_o
5 _ f)
N Z=iysys, niz#Eng, np =0
p=1" .VV * (1?) (38)
Y=iyiya, niz=nu, np =
X =iyys, ni3#nu, n‘lé) =1

Operator P has an intuitive interpretation: If we encode
information in the parity of anyons 3 and 4, then P is the
single-qubit operator manipulating the degree of freedom
associated with anyons 3 and 4 as shown in Fig. 6(e). By
monitoring the measurement outcomes, we apply one of the
logical Pauli operators from the set {/ ,}A( ,Y ,Z } to complete
the measurement-based braiding in Eq. (37). In the surface
code setting, X, ¥, and Z are the logical operators connecting
the twist defects which commute with the stabilizers. For
example, the Z operator is defined as a string of Pauli operators
highlighted in red circles in Figs. 2 and 4.

We can envision using the MBB to demonstrate the non-
Abelian statistics of Majorana fermions. A minimal set of 6
twist defects would be enough. In addition to twists 1-4 in
Fig. 6, we have to include twists 5 and 6. Twists 1 and 2
are used as the ancilla anyons to assist MBB and twists 3—6
are the anyons for demonstrated the non-Abelian statistics.
We can initialize in the basis of (35,46) in the vacuum
state. Initialization is the reverse process of the direct parity
measurement approach discussed in Sec. III A. For example,
the initialization of the vacuum state of anyons 3 and 5
corresponds to setting the twist operator connecting 3 and
5 shown in Fig. 4 to be in an eigenstate with eigenvalue +1.
This can be done by first turning off the stabilizers of those
individual qubits in the twist operator to isolate the qubits.
Then each qubit is set to an eigenstate of the individual Pauli
operator with eigenvalue +1. Finally, turning the stabilizers
involving those qubits back on will initialize the system in the
vacuum state of the twist operator. For details, we refer readers
to Sec. XA of Ref. [24]. Then we perform a MBB to braids
3 and 4. If we measure the parity of 3 and 5, Pss, then there
will be 50% probability that the parity is changed. Generally,
we can perform n MBB of 3 and 4 and then measure P3s. The

probability of parity change will be %, 1, é, 0 forn =1,2,3,0
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(mod 4) [43]. This is an appealing alternative to the condensed
matter settings because the necessary experimental capacities
are within reach due to recent advancements in the surface
code [25-27].

IV. CONCLUSIONS

In conclusion, we have revisited the surface code model
with twist defects. Using a variety of different techniques, we
have shown explicitly the emergence of unpaired Majorana
zero modes associated with twist defects. We also propose a
scheme to measurement the parity (topological charge) of pairs
of Majoranas. The parity measurement serves as a building
block for measurement-based braiding. We investigate the
possibility of performing such braiding without forced mea-
surements. It turns out that it can be done with a nonrepetitive
protocol consisting of a cycle of three topological charge
measurements and one additional single-qubit logical oper-
ation. The uncertainty associated with forced measurements
is removed by our approach. This makes measurement-based
braiding an appealing method for both demonstrating non-
Abelian statistics of Majorana fermions and building Clifford
gates for topological quantum computation.
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APPENDIX: PERTURBATIVE LIMIT OF THE KITAEV
HONEYCOMB MODEL

The surface code model can be obtained from the perturba-
tive limit of the Kitaev honeycomb model. It has been shown
that the Kitaev honeycomb model admits unpaired Majorana
modes after introducing dislocations into the lattice [35,36].
Naturally, one would expect the unpaired Majorana zero modes
associated with twist defects in the toric code model can be
deduced from the Kitaev honeycomb model with a certain
type of dislocations. Indeed, we show this is the case by
starting from the honeycomb model with dislocations and then
performing the perturbation theory.

The Kitaev honeycomb model has spin-1/2 particles
interacting through two-body terms [36,37]:

— E y E
HHCM - J O n Omgtl J” O n’

xlinks vlmks zlinks

(AT)

where the classification of x,y,z links is shown in Fig. 7(a).
This model can be exactly solved by mapping spin a;,° to
four Majorana modes y, ”"° and 1,,,

0y =1V, M, (A2)
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FIG. 7. (Color online) Perturbative limit of honeycomb lattice
model with twist defects. (a) The Kitaev honeycomb model with two
twist dislocations. The unpaired Majorana modes are highlighted by
the dots. (b) In the strong z-bond limit (think green bonds), under
perturbation theory (P.T.) the hexagonal (octagon) plaquette maps to
the square (pentagon) plaquette. A local unitary transformation U is
needed to bring the plaquette operators into the canonical form.

with the Majorana modes satisfying the anticommutation
relation

{J/,‘,)f,)/f} = zaaﬂamna {nnunn} = 28mn7 {)/,Z‘J]n} =0.
(A3)
The dimension of the Hilbert space at each site is increased
from two to four after the mapping. Such a problem is fixed
by defining a projection operator

Dy =¥, ¥, Vit (A4)

and constraining the physical states to be eigenstates of D,
with eigenvalue + 1. The Hamiltonian can be rewritten in terms
of Majorana modes

Hucm =1 Y Y Joltly, . (AS5)

a=x,y,z (mn)

where (mn) denotes the bond connecting spins m and n and
the link operator uj, = iy, v, . Itis straightforward to check
that u,,, commutes with the Hamiltonian and hence can be set
to either 41 or —1. The choice of the value of the link operator
fixes the Z, background gauge. As a result, the Hamiltonian
becomes quadratic in terms of 7 Majorana modes and can be
solved exactly [5,36].

A pair of twist dislocations can be added by modifying
the bonds according to Fig. 7(a). Every y Majorana mode
is paired with another y in the link operator except y;, and
¥iy, both of which disappear from the Hamiltonian and hence
are unpaired Majorana modes. Together they form a fermion
mode introducing an additional topological degeneracy of two.
Next, we show that in the strong z-bond limit the honeycomb
model with dislocations maps to the surface code model
with twist defects, and the unpaired Majorana modes carry
over.

PHYSICAL REVIEW B 92, 245139 (2015)

In the limit J; > J,,J, > 0, it becomes energetically
favorable to have the spins in the z bonds aligned, i.e.,
o50° =1. Each z bond becomes an effective spin with

states | 1) = [M™M)mn and |U) = | )mn. In this case, the
Hamiltonian can be split into two parts:

Hycm = Ho + V, (A6)
Hy=—J, Z OOy, (A7)
zlinks
V==l Y onoy—1J Y oo, (A8)
xlinks ylinks

H) restricts the ground state to the subspace of |f}) and |{})
and V can be treated as a perturbation. For a hexagonal
plaquette without dislocations as shown in Fig. 7(b), the
first nonvanishing term from the fourth-order perturbation
theory [5] is

272

HY Z YTV GV GoVGoV T = — 20
eff 0¥ ovo 16J3 -

0% = (o) o3 a) (o3 ) (o3t

where Gy = (Ey — Hp)~!isthe noninteracting Green function
with Ej being the ground-state energy of Hyp, and T is the
projection operator of the subspace {|1}), [{})}. Regrouping
the Pauli operators in Q' enables us to rewrite Q% in the
effective spin representation

Q(;) -+ const.,

(A9)

0\ = —(0j03)(0505) (01 03 ) (03 03) = 5, 5357’85,

(A10)

where $7% is the effective Pauli operator for the strong z bonds

shown in Fig. 7(b). For a plaquette with a twist dislocation

as shown in Fig. 7(b), we follow the same procedure and

the fifth-order perturbation theory gives rise to the following
Hamiltonian in the effective spin representation:

¢ ST

(5)
T Ty 2 Or eomt

09 = 5)8;5) 858z (A11)
A local unitary transformation U =[], e™*%5 will bring
Q" and QF) into the same form as the surface code model
introduced in Eqgs. (2) and (3). Therefore, after the perturbation
theory and the transformation U, the honeycomb model in
Fig. 7(a) reduces to the surface code model in Fig. 2. The
unpaired Majorana modes y;, and yj, associated with twist
dislocations in the honeycomb model carry over to the surface
code model. Similarly to the case of the Majorana fermion
model in Sec. II B, iy}, v}, is not the physical parity operator
because it does not commute with the projection operator D
and Dj9. Again, the solution is to attach the link operator
uy,, connecting site 12 with site 19 to iy}, ¥y so it commutes
with D,,. In the perturbative limit, this newly defined parity
operator reduces to the parity operator we found previously
in surface code mode. It is highlighted in red circles in
Fig. 2.
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