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We propose a systematic procedure to optimize quantum state tomography protocols for continuous variable
systems based on excitation counting preceded by a displacement operation. Compared with conventional
tomography based on Husimi or Wigner function measurement, the excitation counting approach can significantly
reduce the number of measurement settings. We investigate both informational completeness and robustness, and
provide a bound of reconstruction error involving the condition number of the sensing map. We also identify the
measurement settings that optimize this error bound, and demonstrate that the improved reconstruction robustness
can lead to an order-of-magnitude reduction of estimation error with given resources. This optimization procedure
is general and can incorporate prior information of the unknown state to further simplify the protocol.
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I. INTRODUCTION

Quantum state tomography (QST) is a powerful procedure
to completely characterize quantum states, which can be
extended to quantum process tomography for general quantum
operations. However, QST is often resource consuming,
involving preparation of a large number of identical unknown
states and measurement of a large set of independent ob-
servables. For qubit systems, many techniques have been
developed to reduce the cost of full state tomography,
such as compressed sensing [1–3], permutationally invariant
tomography [4], self-guided or adaptive tomography [5,6],
and matrix product states tomography [7]. In contrast, for
continuous variable (CV) systems that also play an important
role in quantum information, the standard techniques in use
today are decades old, namely, homodyne measurement [8,9]
for optical photons and direct Wigner function measurement
[10–12] for cavity QED. With the rapid development in CV
quantum information processing, ranging from arbitrary state
preparation [13] to universal quantum control [14,15] and from
engineered dissipation [16,17] to quantum error correction
[18,19], a large dimension of Hilbert space can be coherently
controlled in experiments [12,20]. However, homodyne mea-
surement might not be immediately applicable due to intrinsic
nonlinearity preventing applying a very large displacement
in cavity QED, and Wigner function measurement requires
intensive data collection [20]. Thus there is an urgent need for
reliable and efficient tomography for CV systems.

There have been significant advances in excitation counting
over various physical platforms, including optical photons
[21], microwave photons [22–25], and phonons of trapped ions
[26–28]. In particular, the capability of quantum nondemoli-
tion measurement of microwave excitation number has been
demonstrated with superconducting circuits [29]. Tomography
based on excitation counting has also been theoretically pro-
posed [30,31] and experimentally demonstrated with trapped
ions, and cavity or circuit QED [25,26,32]. However, all
these works only considered specific choices of measurement
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settings (associated with certain displacement patterns), and
mostly restricted to the feasibility of tomography, without
further investigating the robustness against measurement noise
to develop robust QST protocols for CV systems.

Motivated by these recent advances, we develop a theo-
retical framework to investigate cost-effective QST protocols
for CV systems based on excitation counting. Conventional
QST protocols can be regarded as special cases collecting
partial information of the excitation number distribution.
For example, up to a displacement, the Husimi Q function
can be regarded as the probability of zero excitation, and
the Wigner function can be obtained from the difference
between probabilities associated with even and odd number of
excitations. We expect more cost-effective QST by collecting
full population distributions upon various displacements using
excitation counting, which can be efficiently achieved in
various CV systems [21–29].

The rest of the paper is organized as follows. In Sec. II,
we first provide a mathematical formulation of QST based on
displacements and excitation counting. We then consider QST
for a special class of quantum states in Sec. III, illustrating the
advantage of excitation counting and introducing the criterion
of error robustness in terms of the condition number (CN) of
the sensing map in Sec. IV. The main results on QST of a
general unknown quantum state are presented in Secs. V and
VI. In Sec. VII, the choice of optimization target for different
error models is analyzed. We put our optimized scheme to
the test using simulated measurement records in Sec. VIII.
Section IX discusses possible generalizations of the scheme.
Finally, the conclusion is given in Sec. X.

II. INFORMATIONAL COMPLETENESS

Mathematically, QST solves the inversion problem

A · �ρ = �b,

where �ρ is the unknown density matrix arranged as a vector,
�b denotes all the measurement records, and A is the sensing
matrix determined by the kind of measurements performed.
The set of measurements should be informationally complete
(IC), that is, the sensing matrix A should be invertible [33].
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FIG. 1. Procedure of estimating the αi via Husimi Q function. (a) shows the true Q function of the state; (b) shows the estimated Q function
via iMLE after measuring Qβ

n (ρ) at three β ′s shown as the crosses; (c) and (d) are estimations after measuring at four and five β ′s, respectively.
Apparently the estimate in (c) already converges to the true Q function shown in (a).

For a nonsquare sensing matrix, the unknown state can be
reconstructed using least-squares fitting:

�ρ = Ã−1 �b = (A†A)−1A† �b.

Due to experimental noise, the least-squares solution may turn
out nonphysical, i.e., having negative eigenvalues. This can be
fixed by finding the physical density matrix σ that is closest
to ρ, with the distance defined by some matrix norm, e.g., the
Frobenius norm. A justification of this procedure is provided
in Appendix A.

For CV systems, each measurement setting is associated
with a displacement operation D(β). We may directly count
the excitation number after the displacement operation and
obtain the number distribution, which is called the generalized
Q function (Qn function) [29,30,34,35]:

Qβ
n (ρ) = tr[|n〉〈n|D(−β)ρD†(−β)],

where n = 0, 1, 2, . . . , nc with nc the maximal resolved
excitation number. Reshaping ρ into a column vector �ρ we
obtain the linear equation �Qβ(ρ) = Aβ �ρ, where �Qβ(ρ) is a
column vector with (nc + 1) entries Q

β
n (ρ) and the matrix Aβ

has (nc + 1) rows. Multiple measurement settings associated
with a set of displacements {β1, β2, . . . , βNβ

} are used to
constrain the inversion problem. The measurement record �b
is then a column vector with Nβ(nc + 1) entries of Q

βj

n (ρ); the
sensing matrix A can be obtained by stacking Aβi , with a total
of Nβ(nc + 1) rows. The basis under which ρ is written can
be arbitrary, e.g., Fock basis |m1〉〈m2| or coherent-state basis
|αi〉〈αj |.

In comparison, the sensing matrix for standard QST with
the Husimi Q function Q

β

n=0(ρ) = 〈β|ρ|β〉 or Wigner function
Wβ(ρ) = ∑

n (−1)nQβ
n (ρ) consists of only Nβ rows [which

are linear combinations of Nβ(nc + 1) rows of the sensing
matrix associated with the Qn function [36]], which neglect
a large portion of potentially useful information. In the
following, we consider QST for a class of quantum states
and show that the neglected information can be crucial.

III. QST FOR CAT STATES

Cat states are quantum states characterized by density
matrix ρ = ∑p

i,j=1 ρij |αi〉〈αj |, where |αi〉 are well-separated
coherent states [37]. The Schrödinger cat state |α〉 + |− α〉
is a well-known example. Standard QST of cat states with

large unknown α’s is resource consuming and requires many
measurement settings. In particular, both the Husimi and
Wigner function measurement schemes encounter the chal-
lenge of unknown α’s, and have to deploy many measurement
settings to scan various displacements, the majority of which is
unfortunately wasted because Qβ(ρ) ≈ Wβ(ρ) ≈ 0 for most
choices of β. In contrast, the Qn function measurement
always generates an excitation distribution, from which we
can estimate the distances |αi − β| for different β. Using the
idea of trilateration, we can estimate all α’s using about three
measurement settings. Using the data Q

β
n (ρ) for {β1, β2, β3},

we can estimate the density matrix ρ̃ using the iterative
maximum likelihood estimation (iMLE) technique [38] and
calculate the corresponding Husimi Q function [see Fig. 1(b)].
To increase confidence, one can additionally measure Q

β
n (ρ)

at one or two β ′s, preferably at the current estimated α′
is [see

Figs. 1(c) and 1(d)]. If the true state is not a cat state, we would
not see clearly separated population patches in the phase space
and need to treat it as a general state.

Once the α′s are known, the generalized Q function mea-
surement only requires one additional measurement setting
to fulfill the IC requirement, independent of the number
of coherent components. It is noteworthy that examples
where tomography requires only one measurement setting are
extremely rare. This observation can be justified by the relation

Qβ
n (ρ) =

p∑
i,j=1

ρijQ
β
n (|αi〉〈αj |)

=
p∑

i,j=1

ρij tr[|n〉〈n|D(−β)|αi〉〈αj |D†(−β)]

=
p∑

i,j=1

ρij e
iθ(β,αi ,αj )e− 1

2 (|αi−β|−|αj −β|)2

× 1

n!
[(αi − β)(αj − β)∗]ne−|αi−β|·|αj −β|

=
p∑

i,j=0

ρ̃ij

1

n!

[
didj e

iφij
]n

,

where we defined

di ≡ |αi − β|,
φij ≡ arg(αi − β) − arg(αj − β),
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θ (β,αi,αj ) ≡ −i(−βα∗
i + β∗αi − αjβ

∗ + α∗
j β)/2,

ρ̃ij ≡ eiθ(β,αi ,αj )e− 1
2 (di−dj )2

e−didj ρij .

Reshaping ρ̃ij as a column vector, we have⎛
⎜⎜⎜⎜⎝

1 · · · 1 · · ·
...

. . .
...

d2n
1 · · · (didj e

iφij )n

...
...

. . .

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ̃11
...

ρ̃ij

...

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0!Qβ

0
...

n!Qβ
n

...

⎞
⎟⎟⎟⎟⎠.

The matrix on the left-hand side is a Vandermonde matrix,
having full column rank (all column vectors are independent
and A†A is invertible) if and only if all didj e

iφij are distinct.
Under the following conditions, all the didj e

iφij are distinct:
(i) di 	= dj , otherwise the columns corresponding to ρ̃ii and
ρ̃jj would be identical; (ii) φij 	= 0, π , otherwise the columns
ρ̃ij and ρ̃j i would be identical; and (iii) didj 	= dkdl or
φij 	= φkl where all of i, j, k, l are assumed to be distinct.
These requirements have clear geometric interpretations: (i) β

does not lie on the perpendicular bisector of the line segment
αiαj ; (ii) β, αi , αj are not collinear; and (iii) triangles formed
by (β, αi, αj ) and (β, αk, αl) do not have the same area or the
angles subtended by the segments αiαj and αkαl from β are
different. There is in fact one extra soft requirement, due to the
factor e− 1

2 (di−dj )2
in Q

β
n (|αi〉〈αj |). When di 
 dj or di � dj ,

ρij gets exponentially suppressed and almost vanishes from
the sensing equation, just like the case with the conventional
Husimi Q function. So we add one requirement: (iv) β does
not lie far away from the bisector of αiαj in the sense that
e− 1

2 (di−dj )2
is not too small. Requirement (iv) is closely related

to the error robustness which will be discussed later. The
Qn function at one suitable β contains sufficient information.
More specifically, the diagonal terms in the density matrix ρii

(the population of |αi〉) can be extracted from the envelope
of the distribution, while the off-diagonal terms ρi,j can be
obtained from the interference signals peaked at n̄ = didj in
the distribution. Therefore, sampling the excitation number
distribution can boost the information gain and thus reduce
the measurement settings significantly.

IV. ERROR ROBUSTNESS OF RECONSTRUCTION

So far, we have only considered the requirement for the IC,
or the possibility of reconstruction. We do not yet know the
accuracy of the reconstruction when measurements are noisy.
Next, we investigate robustness and estimate the reconstruction
error. Assume that the measurements �b have noise δ�b, leading
to noise in the solution Ã−1δ�b. To bound the noise in the
solution, we consider the worst-case noise magnification ratio

κ(A) ≡ ‖Ã−1δ�b‖/‖Ã−1 �b‖
‖δ�b‖/‖�b‖ ,

which is called the CN of A [39]. The CN is a property of the
sensing map and does not depend on the specific procedure
that solves the linear equations. In principle the norm can be
chosen arbitrarily. We will use the two-norm ‖ • ‖2 of vectors,
because in this case the CN is simply the ratio of the largest and
smallest singular values of A [39]. Clearly κ(A) � 1 and when

κ(A) = 1 the sensing map is isometric (distance preserving).
The CN has been introduced as a measure of robustness
of reconstruction schemes for qubit systems [40–42]. Using
Uhlmann’s definition

F (ρ, σ ) = Tr
[√√

ρσ
√

ρ
]
,

the reconstruction fidelity can be bounded as (see Appendix B
for a proof)

F (ρ, ρ + δρ) � 1 − 1
2κ(A)

√
r‖ρ‖F ‖δ�b‖2/‖�b‖2, (1)

where r is the rank of δρ bounded by the system dimension,
and ‖ρ‖F is the Frobenius norm of the true density matrix
which is fixed. Assuming for now that ‖δ�b‖2/‖�b‖2 is fixed
(e.g., due to systematic bias), a robust QST should minimize
CN to have an optimal guarantee of the reconstruction fidelity.
Note that a lower CN reduces the sample complexity but not
the computational complexity of the inversion problem.

We now use CN to examine the robustness of QST for
cat states, for which CN is a function of one complex
variable β. Due to the factor e− 1

2 (di−dj )2
in Q

β
n (|αi〉〈αj |),

when di 
 dj or di � dj , ρij gets exponentially suppressed,
just like the case with the Husimi Q function. In those regions,
the factor exp [(di − dj )2/2] would magnify the noise during
the reconstruction. Thus we estimate

κ(β) ∼
∑
i,j

exp[(di − dj )2/2],

which agrees well with the numerical calculation of CN, as
illustrated in Fig. 2. Different from the requirement for IC, CN
depends on the number of coherent components p, the values
of αi , and the choice of β. For small p, there exist low-CN
regions of β (dark regions in Fig. 2), which imply that the
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FIG. 2. Condition number of the sensing map as a function of β

for cat states with number of components p = 2, 3, 4. Upper panels:
Numerical results for CN. Lower panels: A simple estimate of the
CN using the expression κ(β) ∼ ∑

i,j exp [(di − dj )2/2] where di ≡
|αi − β|. We also included the white lines on which the sensing
map is strictly informationally incomplete (see main text). Blue stars
indicate the positions of the coherent components |αi〉. For visual
clarity, values beyond 100 are all mapped to white. The minimum CNs
achievable for the three cases are 1.74, 6.81, and 38.64 (numerical
results), respectively. Here the maximal resolved excitation number
nc is taken sufficiently large. If nc decreases, CN for large |β| gets
worse.
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FIG. 3. Determinant of the Fisher information I( �ρ) as a function of β for four different states. (a) Two-component maximally mixed cat
state, ρij ∝ δij . In other words, the Bloch vector for the effective two level system is �0. (b) A two-component cat state, with Bloch vector
0.9 · (1, 1, 0)/

√
2. (c) Three-component maximally mixed cat state, ρij ∝ δij . (d) A mixture ρ = (1 − λ)I/3 + λ|ψ〉〈ψ | where I is the identity

and |ψ〉 = (1, 1, 1)†
√

3. The shape of the good detection region for maximally mixed states is very similar to that predicted by the condition
number while for higher purity states additional “interference fringes” appear. The worst case of Fisher information over all true states appears
to be that of the maximally mixed states. The good regions for β predicted by worst-case Fisher information agree well with that given by
condition number.

protocol with only about four measurement settings (about
three for trilateration and one for coherences) can be robust.

These low-CN regions are very similar to the regions
with high Fisher information in the worst case. For the state
ρ = ∑p

i,j=1 ρij |αi〉〈αj | with known αi , the parameters to
estimate are ρij . For convenience we arrange the p2 numbers
as a vector �ρ. For a certain measurement position β, we can
get a distribution:

f (n) ≡ Qβ
n ( �ρ).

According to the definition, the Fisher information matrix is

I( �ρ) = E �ρ

[(
∂

∂ �ρ log f (n)

)(
∂

∂ �ρ log f (n)

)†]

=
∞∑

n=0

1

f (n)

(
∂

∂ �ρ f (n)

)(
∂

∂ �ρ f (n)

)†
,

where

∂f

∂ρij

= Qβ
n (|αi〉〈αj |).

Notice that I( �ρ) is a matrix-valued function depending on
the true state specified by �ρ. We use the determinant of I( �ρ)
as a one-parameter measure of the information contained in
the measurement Q

β
n (ρ) and plot det I( �ρ) as a function of β

for a few different �ρ (see Fig. 3).
This justifies the use of CN as a guide for optimizing

measurement schemes, which is much easier to calculate than
the worst-case Fisher information. For larger p or general
states, we need to consider multiple measurement settings and
optimized choices of β ′s as discussed below.

V. INFORMATIONAL COMPLETENESS
FOR GENERAL STATES

We now consider general states with no structure other
than an excitation number cutoff mc. To achieve IC, we
need Nβ = (mc + 1) different β ′s as argued below. In the
Fock basis, ρ = ∑mc

m1,m2=0 ρm1,m2 |m1〉〈m2|, and for each

term |m1〉〈m2|
Qβ

n (|m1〉〈m2|)

= |β|2ne−|β|2

n!

√
m1!m2!

(−β)m1 (−β∗)m2
Ln−m1

m1
(|β|2)Ln−m2

m2
(|β|2),

where Ln
m(x) is the associated Laguerre polynomial. Note that

Ln
m(x) is not only a polynomial of degree m in x but also a

polynomial of degree m in n. Apart from the factor |β|2ne−|β|2

n! ,

Q
β
n (|m1〉〈m2|) is a polynomial of degree (m1 + m2) in n. Since

Q
β
n (ρ) has a degree of 2mc in n, experimental values of Q

β
n (ρ)

for each β provide (2mc + 1) real coefficients

Qβ
n (ρ) =

2mc∑
k=0

nkc
β

k .

The dependence of c
β

k on ρm1m2 is shown below (omitting β

superscript on ck):
c2mc

∼ ρmc,mc

c2mc−1 ∼ ρmc,mc
,ρmc−1,mc

,ρmc,mc−1

...

cmc
∼ ρ0,mc

,ρ1,mc−1, . . . ,ρmc,0 and all above

cmc+1 ∼ mc new terms and all above

...

c0 ∼ all variables above.

For example, knowledge of c2mc
directly reveals ρmc,mc

, and
c2mc−1 gives a linear equation involving ρmc,mc−1, ρmc−1,mc

,
and ρmc,mc

which is already obtained from c2mc
. After experi-

mentally obtaining Q
β1
n (ρ) and Q

β2
n (ρ), the values of ρmc,mc−1

and ρmc−1,mc
can be determined. Continuing this way we can

determine all of ρm1,m2 after measuring Q
β
n (ρ) for (mc + 1) β ′s.

This analysis is similar to that done in [9].

VI. ERROR ROBUSTNESS FOR GENERAL STATES

It is convenient to consider the covariance matrix,

C ≡ A†A =
∑

j

A
†
βj

Aβj
,
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FIG. 4. Main panel: Condition numbers of full-ring configuration
(FRC) and half-ring configuration (HRC) as a function of the
ring radius (mc = 4 case). Top two insets: FRC and HRC in
phase space. For both schemes, βj = |β|eiφj . FRC: φj = 2π

2mc+1 j ,
j = 0, 1, 2, . . . , 2mc. HRC: φj = π

2mc+1 j , j = 0, 1, 2, . . . , mc. The
condition number of HRC approaches that of FRC as |β| gets large,
as predicted by theory. Bottom inset: Figure of merit κ

√
Nβ for HRC

and FRC.

and κ(C) = κ(A)2. The element C(m1m2),(n1n2) is the overlap of
the columns of A corresponding to |m1〉〈m2| and |n1〉〈n2|. In
the ideal case, where κ(A) = 1 and A is an isometry, C should
be proportional to the identity matrix. Using

A(n,β),(m1,m2) = tr[D(β)|n〉〈n|D(−β)|m1〉〈m2|]

= e−|β|2 1

n!
|β|2n

√
m1!

(−β)m1
Ln−m1

m1
(|β|2)

×
√

m2!

[(−β)m2 ]∗
Ln−m2

m2
(|β|2),

we see that

A(n,β),(m1,m2) ∝ βm2−m1gm1m2 (|β|),
and

C(m1m2),(n1n2) =
∑
n,j

A∗
(n,βj ),(m1,m2)A(n,βj ),(n1,n2)

∝
∑
βj

β
m1−m2−n1+n2
j fm1,m2,n1,n2 (|βj |),

where g and f are real functions that do not have dependence
on the complex argument of β ′s. Note the convenient fact that
the matrix C is additive for parts corresponding to different
β ′s. Consider a set of β ′s with the same magnitude, βj =
|β|eiφj . Partitioning the indices (m1m2) and (n1n2) into groups
according to k1 ≡ m1 − m2 and k2 ≡ n1 − n2, C has a block
structure C = [Ck1k2 ], where elements of the block Ck1k2 are
proportional to

∑
j e−i(k1−k2)φj .

Both intuitively and rigorously, eliminating the off-diagonal
blocks with k1 	= k2 would reduce the condition number. This
is also known as “pinching” in matrix analysis (see also
Appendix C). We may use Nβ = (2mc + 1) measurement
settings with β ′s evenly distributed over a circle with

φj = 2π

2mc + 1
j, for j = 0, 1, . . . , 2mc,

which is denoted as “full-ring configuration” or FRC, as shown
in the inset of Fig. 4. As pointed out in Appendix C, the
multiple-full-ring configuration (MFRC) should be optimal.
However, we observed numerically that the improvement of
MFRC over the FRC with optimal ring radius is extremely
small or even zero. Denote the covariance matrix for a
ring of (2mc + 1) β ′s with radius r as Cr . We compared
minr κ(Cr ) and minr1,r2 κ(Cr1 + Cr2 ). For mc = 1 we found a
1.6% difference and for mc � 2 (tested up to 7) they are equal.
We thus conjecture that FRC is the optimal configuration for
mc � 2. The number of β ′s required for MFRC is at least
twice as large as that of FRC. So practically FRC is much
more efficient than MFRC.

Strictly speaking, with a smaller Nβ it is not possible to
fully pinch matrix C, i.e., satisfying

∑
j

e−i(k1−k2)φj ∝ δk1k2 ,

for all k1, k2. This justifies the ring based configurations used in
[25,26,30]. Numerically, however, we find that for large |β| the
number of measurement settings can be further reduced from
2mc + 1 to mc + 1 without compromising CN, as illustrated
in Fig. 4. The optimized β’s are evenly distributed over half a
circle, with

φj = π

mc + 1
j, for j = 0, 1, . . . , mc,

which is denoted as “half-ring configuration” or HRC, as
shown in the inset of Fig. 4. For even mc, the configuration
φj = 2π

mc+1j , for j = 0, 1, . . . , mc, works as well. The jus-
tification of HRC lies in the special asymptotic behavior of
matrix C. As |β| gets large, the off-diagonal blocks of Ck1,k2

with odd k1 − k2 scale as 1/|β|2, negligible compared to those
Ck1,k2 with even k1 − k2 which scales as 1/|β| (see Appendix F
for a proof). So nearly half of those off-diagonal blocks are
automatically pinched and we only need to have

∑
j

e−i(k1−k2)φj ∝ δk1k2 , for even k1 − k2,

to fully pinch C, which can be achieved using mc + 1
settings. Interestingly, the pinching analysis can be applied
to Homodyne detection (see Appendix D) and we verified that
the intuitive choice of equally spaced phase angles is optimal.
Furthermore, we found that the matrix C for Qn asymptotes to
that of Homodyne detection and so Homodyne detection can
in some sense be seen as the Qn detection with β → ∞.

We also performed numerical gradient-based optimization
of κ(A) over β ′s with different Nβ . The gradient of CN
with respect to β ′s can be calculated using perturbation
theory (detailed in Appendix E). CN drops significantly as
Nβ increases to mc + 1 and does not improve further when
Nβ > mc + 1. For each Nβ we initialize the optimization with
a large number of different configurations of β ′s and HRC
turns out the best (with the exception of the case mc = 1). As a
function of mc, the asymptotic CN grows slowly, κ(A) ∼ m

1/2
c

(see Fig. 5).
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FIG. 5. Optimal condition number for Qn measurements as a
function of mc. Vertical axis shows κ(A)2. Red solid line shows a
linear fit with equation κ2 = 3.28mc − 0.07769.

VII. DISCUSSION OF NOISE MODELS

So far, we have assumed that ‖δ�b‖2/‖�b‖2 is fixed, and
minimize κ(A) to optimize the bound in Eq. (1). On the other
hand, ‖δ�b‖2/‖�b‖2 might be tunable. A practically relevant
situation is shot noise, with

‖δ�b‖2/‖�b‖2 ∝ 1/
√

Nrep.

Meanwhile, κ(A) depends on the number of measurement
settings Nβ . Given total number of measurements (or copies
of unknown states) Ntot = NβNrep, we need to minimize
ε̃ ≡ κ(A)‖δ�b‖/‖�b‖ to have a better bound. Hence,

ε̃ ∝ κ(A)/
√

Nrep = κ(A)
√

Nβ/Ntot

implies that we should minimize κ(A)
√

Nβ . As illustrated in
the bottom inset of Fig. 4, HRC has lower κ(A)

√
Nβ for large

|β|, and is more robust than FRC in that regime. In terms of
scaling with mc,

κ(A)
√

Nβ ∼ m1/2
c

√
mc + 1 ∼ mc

for HRC and FRC while κ(A)
√

Nβ appears superlinear in
mc for Wigner tomography, as shown in Fig. 6. The relative
advantage of Qn tomography grows as mc increases.

VIII. BENCHMARKING WITH SIMULATED DATA

Using simulated data (shot noise only), we tested and
compared several schemes, including Wigner measurements

FIG. 6. Comparison of the figures of merits (assuming shot noise
only) κ

√
Nβ for optimized Qn tomography with large enough |β|

and optimized Wigner tomography obtained from gradient-based
optimization.

where β ′s form a square lattice (yellow triangles), Wigner
measurements with optimized β ′s (red squares), and Qn

measurements with optimized β ′s (blue circles). For each case
reconstruction is done by fitting a physical density matrix to the
data, a semidefinite program that can be solved efficiently with
the Matlab package CVX [43,44]. Some typical results with
mc = 2 and 5 are shown in Fig. 7. Both optimized schemes
have better error scaling than the unoptimized one, because the
bound for the unoptimized case is too forgiving to suppress
reconstruction error. Between the two optimized schemes, the
reconstruction infidelity for the Qn-based scheme is at least
an order of magnitude smaller than that of the Wigner-based
scheme. Moreover, the advantage of using Qn measurement
and more generally optimized schemes indeed becomes more
significant for larger mc, as predicted by the figure of merit
shown in Fig. 6 and demonstrated by Fig. 7.

IX. GENERALIZATIONS

The idea of optimizing the condition number of the
measurement scheme is completely general and can apply
to the reconstruction problem using arbitrary bases. Here we
show one such example, the generalized cat states,

ρ =
∑

i,j,m1,m2

ρi,m1;j,m2 |αi,m1〉〈αj ,m2|,

where i, j = 1, 2, . . . , p and m1,m2 = 0, 1, . . . , mc, and

|αi,mi〉 ≡ D(αi)|mi〉
are displaced Fock states. Such states may arise when an ideal
cat state is subject to experimental noise and each coherent-
state component is deformed. Now each column of the sensing
matrix has the form

(didj e
iφij )nP (n),

where P (n) is a polynomial coming from the associated
Laguerre polynomials

P (n) = Ln−m1
m1

(|β|2)Ln−m2
m2

(|β|2).

On a large scale of n, the change of (didj e
iφij )nP (n) as a

function of n is dominated by the exponential part (didj e
iφij )n.

So just as in the cat state case the columns with distinct didj e
iφij

are linearly independent. For the (mc + 1)2 columns that share
the same didj e

iφij but different polynomials P (n), we need
(mc + 1) different β’s to completely fix all unknowns as
discussed previously. We can then run numerical optimization
for all N � (mc + 1) and pick the optimal N .

A simultaneous optimization of many β ′s can often get
stuck in shallow local minima. Here we show an alternative
greedy policy for optimization that works pretty well, where
we pick one best β at a time. The procedure is as follows.

(1) Start with an empty set S = ∅ of β ′s, keeping all the α′s
but set mc = 0, which allows the condition number to be finite
with one β.

(2) Pick the optimal β (in the sense that it combined with
those β ′s in S produces the lowest condition number) and add
it to the set S.

(3) If the optimal condition number is small enough,
increase mc by one (otherwise keep it the same).
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FIG. 7. Comparison of performances of Wigner measurements where β ′s form a square lattice (yellow triangles), Wigner measurements
with optimized measurement settings obtained from gradient search (red squares), and Qn measurements with optimized measurement settings
(blue circles). Left and right panels correspond to mc = 2 and 5. The true state ρ is a randomly generated density matrix with excitation number
cutoff mc = 5. Each scatter point corresponds to one reconstruction via semidefinite programming based on a set of simulated measurement
records containing only shot noise. The y axis shows the reconstruction infidelity δF = 1 − F (ρ, ρ ′) and the x axis shows the total number of
measurements performed, i.e., total number of copies of unknown states consumed.

(4) Repeat steps 2 and 3 until one reaches the desired mc.
We give one example here for which the condition number

as a function of the next β to pick is shown in Fig. 8.

X. CONCLUSION

We proposed and analyzed a continuous variable QST
scheme with the full distribution information of excitation
number after a variable displacement. We showed how to
construct a set of measurements that has a small reconstruction
error bound by optimizing a figure of merit based on the
condition number of the sensing map. For general states with
a given excitation number cutoff, we obtained the optimal
displacement patterns (half-ring and full-ring) that rationalize
and improve the previously considered ring-based choices.
The idea of gradient-based optimization of the condition
number of the sensing map is versatile and can apply to states
expanded in an arbitrary basis and detection methods that
are parameterized by some continuous variables. As future
work, it is interesting to generalize the current scheme to QST

for multiple oscillators, spin ensembles [45], and CV process
tomography.
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APPENDIX A: RECONSTRUCTING A PHYSICAL
DENSITY MATRIX

Let �ρ ′ be the least-squares solution (potentially nonphysi-
cal) from the noisy measurement record:

�ρ ′ = (A†A)−1A†(�b + δ�b).

FIG. 8. Greedy optimization of the set of β ′s. Crosses show the position of α′s and stars indicate all the β ′s added to the set S. At each step,
the optimal β is added to the set S. When the condition number is low enough (smaller than a preset threshold), mc is increased by one and the
optimization goes on.
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We claim that the physical density matrix τ that is closest to
ρ ′ in the sense of some norm (say, the Frobenius norm) can
only be a better estimate of the true state ρ, i.e.,

‖τ − ρ‖F � ‖ρ ′ − ρ‖F . (A1)

We now prove the above equation by contradiction. Suppose
‖τ − ρ‖F > ‖ρ ′ − ρ‖F . Now consider the triangle whose
vertices are ρ, ρ ′, and τ . Let θ ∈ [0,π ] be the angle at the
vertex τ . Using the Law of Cosines, we have that

cos θ = ‖ρ ′ − τ‖2
F − ‖ρ − ρ ′‖2

F + ‖ρ − τ‖2
F

2‖ρ ′ − τ‖F ‖ρ − τ‖F

> 0.

This implies that 0 � θ < π/2, i.e., the angle at τ is less than
90 deg.

Hence, there exists a point ζ that is a convex combination
of τ and ρ such that

‖ζ − ρ ′‖F < ‖τ − ρ ′‖F .

Moreover, since ρ and τ are physical density matrices and
the space of density matrices is convex, it follows that ζ is
also physical. This contradicts the assumption that “τ is the
physical density matrix τ that is closest to ρ ′.” Therefore, we
conclude that Eq. (A1) must hold.

Practically, τ can be obtained as the solution of the
following semidefinite program (SDP):

minimize ‖σ − ρ ′‖F

subject to σ � 0, trσ = 1.

Note that SDP can be solved efficiently using the Matlab
package CVX [43,44].

Alternatively, a physical reconstruction τ ′ may be obtained
by directly solving the least-squares problem in the space of
physical density matrices, i.e.,

minimize ‖A · �σ − �b′‖2

subject to σ � 0, trσ = 1.

APPENDIX B: BOUND FOR RECONSTRUCTION ERROR

We derive the lower bound on the fidelity of reconstruction
in terms of condition number here. We will first find an upper
bound for the trace distance of the reconstructed state to the
true state, and then get the fidelity bound using the relation
between fidelity and trace distance D(ρ, σ ):

F (ρ, σ ) � 1 − D(ρ, σ )

where D(ρ, σ ) = 1
2‖ρ − σ‖tr.

Let �ρ be the true state and �ρ ′ be the least-squares solution
from the noisy measurement record:

�ρ = (A†A)−1A† �b,

�ρ ′ = (A†A)−1A†(�b + δ�b),

and define δ �ρ ≡ �ρ − �ρ ′ = Ã−1δ�b = (A†A)
−1

A†δ�b.
Following the main text we use the two-norm for vectors �ρ

to define the condition number, then(‖δ �ρ‖2

‖ �ρ‖2

)/(‖δ�b‖2

‖�b‖2

)
� κ(A).

Since the Frobenius norm of a matrix is the same as the two-
norm of it when arranged as a vector,

‖ρ‖F = ‖�ρ‖2 � κ(A)‖ρ‖F

‖δ�b‖2

‖�b‖2

.

Let τ be the physical density matrix that best satisfies
the noisy measurement record Aτ = �b + δ�b, obtained as
described in the previous section. We have

‖ρ − τ‖F � ‖ρ − ρ ′‖F = ‖δρ‖F � κ(A)‖ρ‖F

‖δ�b‖2

‖�b‖2

,

where the first inequality uses Eq. (A1). The above bound
is useful since it upper bounds the distance (in terms of the
Frobenius norm) between the reconstructed state and the true
state.

Using the relation between the trace norm and Frobenius
norm

‖M‖tr �
√

r‖M‖F ,

we find

D(ρ, τ ) � 1

2

√
r‖ρ − τ‖F � 1

2

√
rκ(A)‖ρ‖F

‖δ�b‖2

‖�b‖2

and

F (ρ, τ ) � 1 − D(ρ, τ ) � 1 − 1

2

√
rκ(A)‖ρ‖F

‖δ�b‖2

‖�b‖2

. (B1)

In practice we have an estimate for the measurement noise ε ∼
‖δ�b‖2

‖�b‖2
and the truncation dimension d upper bounds the rank r

of δρ. Since ρ is unknown we replace it with the reconstructed
τ . In this way an approximate bound on the fidelity can be
calculated, F (ρ, τ ) � 1 − 1

2ε
√

dκ(A)‖τ‖F .

APPENDIX C: DISCUSSION OF FULL- AND
HALF-RING CONFIGURATIONS

1. The pinching inequality

Mathematically, wiping out all the off-diagonal blocks is
called “pinching” and is formally described as

C �→ C̃ =
∑

k

PkCPk,

where Pk is the projector to the subspace corresponding
to the block Ckk . It is known that the eigenvalues of
C̃ are majorized by those of C (see p. 50 of [39]),
i.e.,

∑k
i=1 λ

↓
i (C̃) �

∑k
i=1 λ

↓
i (C) for k = 1, 2, . . . , D and∑D

i=1 λ
↓
i (C̃) = ∑D

i=1 λ
↓
i (C), where λ

↓
i are the eigenvalues in

descending order and D is the dimension of C and C̃. This
implies that κ(C̃) � κ(C). This fact can also be understood
in the language of quantum mechanics. View C̃ as a block-
diagonal Hamiltonian H0 and C − C̃ as a perturbation H1

coupling different subspaces of H0. It is well known that
energy levels repel each other when coupled to each other.
So the highest energy level gets higher and the lowest gets
lower, with their ratio being increased.

This means that among the sets of β ′s with the same
magnitude, the FRC can give the optimal CN.
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2. Multiple full-ring configuration gives
lowest condition number

We now argue that the MFRC can give the minimal con-
dition number if we do not limit the number of measurement
settings. Here is our two-step argument.

(a) Given a candidate configuration {βi} distributed on a
ring, i.e., |βi | = r , we can always decrease CN by rearranging
or adding β ′s such that the configuration becomes FRC, i.e.,
pinching the covariance matrix.

(b) For any given candidate set {βi} distributed on different
rings, we can always decrease the condition number by
rearranging or adding β ′s such that the configuration becomes
a collection of FRC (MFRC) to pinch the covariance matrix.

Numerically we observed that usually one full-ring con-
figuration is as good as the multiple full-ring configuration,
except the case with mc = 1 where a 1.6% difference between
single-ring and double-ring configurations is found.

3. Half-ring configuration approximates full-ring
configuration well

We find it possible to simplify FRC further. With less
than (2mc + 1) points, it is impossible to exactly satisfy∑

j ei(k1−k2)φj = δk1k2 for all k1, k2. However, we find a very
special asymptotic behavior of the covariance matrix, as stated
by the following theorem (see Appendix F for the proof).

Theorem 1. The large-|β| asymptotic form of Cm1m2,m3m4 (β)
is

Cm1m2,m3m4 (β)

∼
{

g(m1,m2,m3,m4, φ)/|β|, ∑4
i=1 mi is even;

g(m1,m2,m3,m4, φ)/|β|2, ∑4
i=1 mi is odd,

where φ is the complex angle of β.
This theorem effectively says that the elements of C(β)

have a “parity selection rule.”
So in the large |β| limit, the block Ck1k2 ∼ 1/|β| if k1 − k2

is even and Ck1k2 ∼ 1/|β|2 if k1 − k2 is odd. Certainly, all
diagonal blocks Ckk ∼ 1/|β|. So if |β| is large enough, the
blocks with odd (k1 − k2) automatically vanish. To make the
rest of the off-diagonal blocks vanish, we only need to choose
a configuration such that

∑
j ei(k1−k2)φj = δk1k2 holds for even

k1 − k2 = 2l, where l = 0, ± 1, ± 2, . . . , ± mc, i.e.,∑
j

e2ilφj = δl,0.

It is straightforward to check that the HRC φj = π
mc+1j

qualifies for all mc and φj = 2π
mc+1j qualifies for even mc.

In fact for even mc, φj = 2πn
mc+1j could work for any nonzero

integer n. Therefore if the optimal radius of FRC is large
(which as we will show is usually the case), HRC should work
equally well with only half of the measurements.

APPENDIX D: OPTIMAL SETTING FOR HOMODYNE MEASUREMENT

The pinching analysis to Homodyne tomography follows the Qn case closely. The term |m1〉〈m2| contributes the Homodyne
signal:

H(|m1〉〈m2|) = tr[|xθ 〉〈xθ ||m1〉〈m2|] = ei(m1−m2)θ

π1/2
√

2m1+m2m1!m2!
e−x2

Hm1 (x)Hm2 (x).

And the covariance matrix is

Cm1m2,m3m4 = ei(m3−m4−m1+m2)θ

π
√

2m1+m2+m3+m4m1!m2!m3!m4!

∫ +∞

−∞
e−2x2

Hm1 (x)Hm2 (x)Hm3 (x)Hm4 (x)

≡ ei(m3−m4−m1+m2)θ

π
√

2m1+m2+m3+m4m1!m2!m3!m4!
g(m1,m2,m3,m4).

Due to the properties of the Hermite polynomials, i.e., Hn(x) is an odd or even function of x if n is odd or even. If
m1 + m2 + m3 + m4 is odd, the integral∫ +∞

−∞
dx e−2x2

Hm1 (x)Hm2 (x)Hm3 (x)Hm4 (x) = 0.

To pinch the covariance matrix, we can use the half-ring configuration, i.e., pick (mc + 1) θj such that θj = π
2mc+1j where

j = 0, 1, 2, . . . , mc.
Plugging definite values for m1, m2, m3, m4, we find the covariance matrix for Homodyne to be the same (up to a global

constant) as the asymptotic covariance matrix for Qn measurements.

APPENDIX E: NUMERICAL CALCULATION OF THE GRADIENT OF THE CONDITION NUMBER

We briefly outline how to calculate the gradient of a matrix’s condition number using perturbation theory, in the context of
the state tomography problem.

Let us perturb matrix A by changing βi infinitesimally:

A(βi + δβi) = A + δβi(∂βi
A) ≡ A + δβiBi,
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where matrix Bi can be calculated from the explicit expression of A. Note that we are changing only one βi so there is no
summation over i here. We try to find ∂βi

κ(A). For convenience we choose to work with the Hermitian covariance matrix
C ≡ A†A whose condition number is κ(C) = κ(A†A) = κ(A)2:

∂βi
κ(C) = ∂βi

εmax(C)

εmin(C)
= ∂βi

εmax(C)εmin(C) − εmax(C)∂βi
εmin(C)

εmin(C)2
, (E1)

where εmax/εmin are the largest/smallest eigenvalues of C. Now the problem reduces to calculate the gradient of the eigenvalues
of C with respect to βi .

It is well known in quantum mechanics that the first-order perturbation to the energy of the kth eigenstate is

δεk = 〈ψk|δH |ψk〉
where |ψk〉 is the kth eigenstate of the unperturbed Hamiltonian H and δH is a small perturbation.

In our case,

C(βi + δβi) = C + δβi(B
†
i A + A†Bi) + O(δβ2),

so

∂βi
εk(C) = v

†
k(B†

i A + A†Bi)vk, (E2)

where vk is the kth eigenvector of C.

APPENDIX F: PROOF OF THEOREM 1

For completeness, we provide the detailed proof of Theorem 1 in this appendix.

1. Some preparation

Lemma 1. Let Iν(z) denote the modified Bessel functions of the first kind. For any non-negative integer k, we have

∂k

∂zk
[(2

√
z)νIν(2

√
z)] = 2k [(2

√
z)ν−kIν−k(2

√
z)],

∂k

∂zk
[(2

√
z)−νIν(2

√
z)] = 2k [(2

√
z)−(ν+k)Iν+k(2

√
z)].

Proof. These can be verified using the properties of Iν(z). �
Lemma 2. Let n, j1, j2, j3, j4 be non-negative integers, then we have

∞∑
n=0

zn

(n!)2

(
n

j1

)(
n

j2

)(
n

j3

)(
n

j4

)

= 1

j1!j2!j3!j4!
zj4

∂j4

∂zj4
zj3

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2

√
z)

=
j4∑

k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(
√

z)j1+j2+j3+j4−k3−k4Ij1−j2−j3−j4+k3+k4 (2
√

z),

where I0(2
√

z) = ∑∞
n=0

zn

(n!)2 .
Proof. It is straightforward to show that

∑
n

zn

(n!)2

(
n

j

)
= 1

j !

∑
n

zn

(n!)2
n(n − 1) · · · (n − j + 1) = 1

j !
zj ∂j

∂zj
I0(2

√
z).

Similarly,

∞∑
n=0

zn

(n!)2

(
n

j1

)(
n

j2

)(
n

j3

)(
n

j4

)
= 1

j1!j2!j3!j4!
zj4

∂j4

∂zj4
zj3

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2

√
z).

We now try to express the above quantity in an explicit form.
First, using Lemma 1,

∂j1

∂zj1
I0(2

√
z) = 2j1 [(2

√
z)−j1I−j1 (2

√
z)].
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Next,

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2

√
z) = 2j2−j1

[
(2

√
z)j1−j2Ij1−j2 (2

√
z)

]
.

Continuing this, we can get

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2

√
z) = 2j2−j1

∂j3

∂zj3
zj2

[
(2

√
z)j1−j2Ij1−j2 (2

√
z)

]

= 2j2−j1

j3∑
k3=0

(
j3

k3

)
∂k3

∂zk3
(zj2 )

∂j3−k3

∂zj3−k3

[
(2

√
z)j1−j2Ij1−j2 (2

√
z)

]

= 2j3+j2−j1

j3∑
k3=0

(
j3

k3

)
∂k3

∂zk3
(zj2 )2−k3

[
(2

√
z)j1−j2−j3+k3Ij1−j2−j3+k3 (2

√
z)

]
.

Eventually we obtain

zj4
∂j4

∂zj4
zj3

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2

√
z)

=
j4∑

k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(
√

z)j1+j2+j3+j4−k3−k4Ij1−j2−j3−j4+k3+k4 (2
√

z).

Note that in the above derivation, factors like

a!

(a − b)!
= a(a − 1)(a − 2) · · · (a − b + 1)

are naturally interpreted as zero if a < b. �
Lemma 3. Let m be a positive integer and k is a non-negative integer:

m∑
i=0

(−1)i
(

m

i

)
ik =

⎧⎨
⎩

0, if 0 � k < m;
(−1)mm!, if k = m;

(−1)mm!
(
m + 1

2

)
, if k = m + 1.

Proof. Let α be any real number:

(1 + α)m =
m∑

i=0

αi

(
m

i

)
.

We then have (
α

∂

∂α

)k

(1 + α)m =
m∑

i=0

ikαi

(
m

i

)
.

Defining x ≡ 1 + α, we have

α
∂

∂α
= (α + 1 − 1)

∂

∂(α + 1)
= (x − 1)

∂

∂x
= x

∂

∂x
− ∂

∂x
.

So
m∑

i=0

(−1)i
(

m

i

)
ik =

(
α

∂

∂α

)k

(1 + α)m
∣∣∣∣
α=−1

=
(

x
∂

∂x
− ∂

∂x

)k

xm

∣∣∣∣
x=0

. (F1)

Expanding (x ∂
∂x

− ∂
∂x

)
k

we will get 2k terms, among which those that contain l factors of − ∂
∂x

would reduce the power of xm

by l (note that the factor x ∂
∂x

preserves the power of x). The only term surviving in Eq. (F1) is x0. Clearly when k < m, all the
terms have power at least m − k. When k = m, the only term surviving is(

− ∂

∂x

)m

xm = (−1)mm!.
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For k = m + 1, there are m + 1 surviving terms each of which has m factors of − ∂
∂x

and one factor of x ∂
∂x

. They differ by the
position where x ∂

∂x
appear. Consider the term with the ith factor being x ∂

∂x
; it is(

− ∂

∂x

)i−1

x
∂

∂x

(
− ∂

∂x

)m+1−i

xm = (−1)m
(

∂

∂x

)i−1

x
∂

∂x

m!

(i − 1)!
xi−1

= (−1)m(i − 1)!
m!

(i − 2)!

= (−1)mm!(i − 1).

Summing all these terms we get
m+1∑
i=1

(−1)mm!(i − 1) = (−1)mm!

(
m + 1

2

)
.

�

2. Proof of Theorem 1

Proof. Let β = |β|eiφ , x ≡ |β|, M = m1 + m2 + m3 + m4, then we have

Cm1,m2;m3,m4 (β) =
∑

n

A∗
n;m1m2

An;m3m4

= eiφ(m2+m3−m1−m4)(−1)M
√

m1!m2!m3!m4!x−Me−2x2
∑

n

x4n

(n!)2
Ln−m1

m1
(x2)Ln−m2

m2
(x2)Ln−m3

m3
(x2)Ln−m4

m4
(x2).

Using the explicit formula for the associated Laguerre polynomial

Ln−m
m (x2) =

m∑
i=0

1

i!

(
n

m − i

)
(−x2)i =

m∑
j=0

(
n

j

)
(−1)m−j

(m − j )!
x2(m−j ),

we find that ∑
n

x4n

(n!)2
Ln−m1

m1
(x2)Ln−m2

m2
(x2)Ln−m3

m3
(x2)Ln−m4

m4
(x2)

=
m1∑

j1=0

m2∑
j2=0

m3∑
j3=0

m4∑
j4=0

(−1)M−j1−j2−j3−j4x2(M−j1−j2−j3−j4)

(m1 − j1)!j1!(m2 − j2)!j2!(m3 − j3)!j3!(m4 − j4)!j4!

× j1!j2!j3!j4!
∑

n

x4n

(n!)2

(
n

j1

)(
n

j2

)(
n

j3

)(
n

j4

)
.

Letting z = x4, using Lemma 2, we have

j1!j2!j3!j4!
∑

n

x4n

(n!)2

(
n

j1

)(
n

j2

)(
n

j3

)(
n

j4

)

= zj4
∂j4

∂zj4
zj3

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2

√
z)

=
j4∑

k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(
√

z)j1+j2+j3+j4−k3−k4Ij1−j2−j3−j4+k3+k4 (2
√

z).

Therefore after some simplification∑
n

x4n

(n!)2
Ln−m1

m1
(x2)Ln−m2

m2
(x2)Ln−m3

m3
(x2)Ln−m4

m4
(x2)

= (−1)Mx2M

m1∑
j1=0

m2∑
j2=0

m3∑
j3=0

m4∑
j4=0

(−1)j1+j2+j3+j4

(m1 − j1)!j1!(m2 − j2)!j2!(m3 − j3)!j3!(m4 − j4)!j4!

×
j4∑

k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(x2)−k3−k4Ij1−j2−j3−j4+k3+k4 (2x2).

052327-12



OPTIMIZED TOMOGRAPHY OF CONTINUOUS VARIABLE . . . PHYSICAL REVIEW A 94, 052327 (2016)

Part of the above formula can be further simplified:
m3∑

j3=0

m4∑
j4=0

(−1)j3+j4

(m3 − j3)!j3!(m4 − j4)!j4!

×
j4∑

k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(x2)−k3−k4Ij1−j2−j3−j4+k3+k4 (2x2)

=
m4∑

k4=0

m3∑
k3=0

m3∑
j3=k3

m4∑
j4=k4

(−1)j3+j4

(m3 − j3)!(m4 − j4)!

× 1

k4!(j4 − k4)!

1

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(x2)−k3−k4Ij1−j2−j3−j4+k3+k4 (2x2)

=
m4∑

k4=0

m3∑
k3=0

m3−k3∑
j3=0

m4−k4∑
j4=0

(−1)j3+k3+j4+k4

(m3 − j3 − k3)!(m4 − j4 − k4)!

× 1

k4!j4!

1

k3!j3!

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!
(x2)−k3−k4Ij1−j2−j3−j4 (2x2)

=
m4∑

k4=0

m3∑
k3=0

(x2)−k3−k4

k3!k4!
(−1)k3+k4

j2!

(j2 − k3)!(m3 − k3)!(m4 − k4)!

×
m3−k3∑
j3=0

(−1)j3
(j2 + j3)!

(j2 + j3 − k4)!

(
m3 − k3

j3

) m4−k4∑
j4=0

(−1)j4

(
m4 − k4

j4

)
Ij1−j2−j3−j4 (2x2).

Now ∑
n

x4n

(n!)2
Ln−m1

m1
(x2)Ln−m2

m2
(x2)Ln−m3

m3
(x2)Ln−m4

m4
(x2)

= (−1)Mx2M 1

m1!m2!

m4∑
k4=0

m3∑
k3=0

(x2)−k3−k4

k3!k4!(m3 − k3)!(m4 − k4)!
(−1)k3+k4

×
m1∑

j1=0

(−1)j1

(
m1

j1

) m2∑
j2=0

(−1)j2

(
m2

j2

)
j2!

(j2 − k3)!

×
m3−k3∑
j3=0

(−1)j3
(j2 + j3)!

(j2 + j3 − k4)!

(
m3 − k3

j3

) m4−k4∑
j4=0

(−1)j4

(
m4 − k4

j4

)
Ij1−j2−j3−j4 (2x2).

We now focus on one term in the double summation
∑m4

k4=0

∑m3
k3=0, i.e., the summand with fixed k3 and k4. It is known that

for large z

Iν(z) ∼ ez

√
2πz

[
1 − 4ν2 − 1

8z
+ (4ν2 − 1)(4ν2 − 9)

2!(8z)2
+ · · · + (−1)l

∏l
i=1[4ν2 − (2i − 1)2]

l!(8z)l
+ · · ·

]
,

in our case

Ij1−j2−j3−j4 (2x2) ∼ e2x2

2x
√

π

[
1 − 4(j1 − j2 − j3 − j4)2 − 1

16x2
· · · + (−1)l

∏l
i=1[4(j1 − j2 − j3 − j4)2 − (2i − 1)2]

l!(4x)2l
+ · · ·

]
.

The expansion of Ij1−j2−j3−j4 (2x2) contains polynomials of the form j
p1
1 j

p2
2 j

p3
3 j

p4
4 . Note also j2!

(j2−k3)! is a polynomial of j2

of degree k3 and (j2+j3)!
(j2+j3−k4)! is a polynomial of (j2 + j3) of degree k4. So overall the summand of the quadruple summation∑m1

j1=0

∑m2
j2=0

∑m3−k3
j3=0

∑m4−k4
j4=0 is a combination of polynomials of the form j

p1
1 j

p2
2 j

p3
3 j

p4
4 . Due to Lemma 3, the terms j

p1
1 j

p2
2 j

p3
3 j

p4
4

that gives nonzero contribution are those with p1 � m1, p2 � m2, p3 � m3 − k3, and p4 � m4 − k4. We try to find such terms
with the lowest power in 1

x
, i.e., to find the smallest l such that the expression

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!

l∏
i=1

[4(j1 − j2 − j3 − j4)2 − (2i − 1)2]
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contains a term like j
m1
1 j

m2
2 j

m3−k3
3 j

m4−k4
4 or of even higher order. Since

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!

l∏
i=1

[4(j1 − j2 − j3 − j4)2 − (2i − 1)2] = j
k3
2 (j2 + j3)k4 4l(j1 − j2 − j3 − j4)2l + (lower order terms),

we must require

k3 + k4 + 2l � m1 + m2 + m3 − k3 + m4 − k4,

i.e.,

2(l + k3 + k4) � m1 + m2 + m3 + m4 = M.

Thus the smallest l should be

l∗ =
{

M
2 − k3 − k4, if M even;
M+1

2 − k3 − k4, if M odd.

So if we neglect terms that either give zero contribution to the quadruple sum over ji or are not of the leading order in 1
x

,

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!
Ij1−j2−j3−j4 (2x2) ∼ j

k3
2 (j2 + j3)k4 (−1)l∗

4l∗ (j1 − j2 − j3 − j4)2l∗

l∗!(4x)2l∗

e2x2

2x
√

π

= j
k3
2 (j2 + j3)k4 (j1 − j2 − j3 − j4)2l∗ (−1)l∗

l∗!4l∗x2l∗

e2x2

2x
√

π
.

When M is even, 2(l∗ + k3 + k4) = M , so

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!
Ij1−j2−j3−j4 (2x2) ∼ j

k3
2

k4∑
μ=0

(
k4

μ

)
j

μ

2 j
(k4−μ)
3 (−1)m2+m3+m4−2(k3+k4)j

m1
1 j

m2−k3−μ

2 j
m3−k3−k4+μ

3 j
m4−k4
4

×
(

M − 2k3 − 2k4

m1,m2 − k3 − μ,m3 − k3 − k4 + μ,m4 − k4

)
(−1)l∗

l∗!4l∗x2l∗

e2x2

2x
√

π

= (−1)M−m1

k4∑
μ=0

(
k4

μ

)(
M − 2k3 − 2k4

m1,m2 − k3 − μ,m3 − k3 − k4 + μ,m4 − k4

)

× j
m1
1 j

m2
2 j

m3−k3
3 j

m4−k4
4

(−1)M/2−k3−k4

(M/2 − k3 − k4)!2(M−2k3−2k4)x(M−2k3−2k4)

e2x2

2x
√

π
,

where ( n

k1, k2, · · · , km
) ≡ n!

k1!k2!···km! .
Using Lemma 3,

m1∑
j1=0

(−1)j1

(
m1

j1

) m2∑
j2=0

(−1)j2

(
m2

j2

) m3−k3∑
j3=0

(−1)j3

(
m3 − k3

j3

) m4−k4∑
j4=0

(−1)j4

(
m4 − k4

j4

)
j

m1
1 j

m2
2 j

m3−k3
3 j

m4−k4
4

=
m1∑

j1=0

(−1)j1

(
m1

j1

)
j

m1
1

m2∑
j2=0

(−1)j2

(
m2

j2

)
j

m2
2

m3−k3∑
j3=0

(−1)j3

(
m3 − k3

j3

)
j

m3−k3
3

m4−k4∑
j4=0

(−1)j4

(
m4 − k4

j4

)
j

m4−k4
4

= (−1)M−k3−k4m1!m2!(m3 − k3)!(m4 − k4)!.
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Plugging back to the expression of
∑

n
x4n

(n!)2 Ln−m1
m1

(x2)Ln−m2
m2

(x2)Ln−m3
m3

(x2)Ln−m4
m4

(x2) we eventually get

∑
n

x4n

(n!)2
Ln−m1

m1
(x2)Ln−m2

m2
(x2)Ln−m3

m3
(x2)Ln−m4

m4
(x2)

∼ (−1)m1+M/2e2x2
xM−1 1

2M+1

1√
π

m4∑
k4=0

m3∑
k3=0

(−1)k3+k4 22(k3+k4)

k3!k4!(M/2 − k3 − k4)!

k4∑
μ=0

(
k4

μ

)

×
(

M − 2k3 − 2k4

m1,m2 − k3 − μ,m3 − k3 − k4 + μ,m4 − k4

)
.

Finally, we have the leading-order contribution for the even M case:

Cm1,m2;m3,m4 (β) ∼ x−1eiφ(m2+m3−m1−m4)
√

m1!m2!m3!m4!(−1)m1+M/2 1

2M+1
√

π

m4∑
k4=0

m3∑
k3=0

(−1)k3+k4 22(k3+k4)

k3!k4!(M/2 − k3 − k4)!

×
k4∑

μ=0

(
k4

μ

)(
M − 2k3 − 2k4

m1,m2 − k3 − μ,m3 − k3 − k4 + μ,m4 − k4

)
= g(m1,m2,m3,m4, φ)

|β| .

When M is odd, 2(l∗ + k3 + k4) = M + 1. In this case five terms give nonzero contribution under the quadruple sum of ji ,
which are P1 ≡ j

m1+1
1 j

m2
2 j

m3−k3
3 j

m4−k4
4 , P2 ≡ j

m1
1 j

m2+1
2 j

m3−k3
3 j

m4−k4
4 , P3 ≡ j

m1
1 j

m2
2 j

m3−k3+1
3 j

m4−k4
4 , P4 ≡ j

m1
1 j

m2
2 j

m3−k3
3 j

m4−k4+1
4 ,

and P5 ≡ j
m1
1 j

m2
2 j

m3−k3
3 j

m4−k4
4 . P1, . . . , P4 are the highest-order terms about the variables ji in the summand and P5 is the next

highest order. Let us write

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!
Ij1−j2−j3−j4 (2x2) ∼ (−1)l∗

l∗!4l∗x2l∗

e2x2

2x
√

π

5∑
ν=1

λνPν.

The coefficients λν are essentially combinatoric factors and it is not difficult to work them out, although the process can be long
and tedious. Eventually we find

λ1 = (−1)m1+1
k4∑

μ=0

(
k4

μ

)(
M + 1 − 2k3 − 2k4

m1 + 1,m2 − k3 − μ,m3 − k3 − k4 + μ,m4 − k4

)
,

λ2 = (−1)m1

k4∑
μ=0

(
k4

μ

)(
M + 1 − 2k3 − 2k4

m1,m2 − k3 − μ + 1,m3 − k3 − k4 + μ,m4 − k4

)
,

λ3 = (−1)m1

k4∑
μ=0

(
k4

μ

)(
M + 1 − 2k3 − 2k4

m1,m2 − k3 − μ,m3 − k3 − k4 + μ + 1,m4 − k4

)
,

λ4 = (−1)m1

k4∑
μ=0

(
k4

μ

)(
M + 1 − 2k3 − 2k4

m1,m2 − k3 − μ,m3 − k3 − k4 + μ,m4 − k4 + 1

)
,

λ5 =
k4∑

μ=0

−k3(k3 − 1)

2

(
k4

μ

)(
M + 1 − 2k3 − 2k4

m1,m2 − k3 − μ + 1,m3 − k3 − k4 + μ,m4 − k4

)

+
k4−1∑
μ=0

−k4(k4 − 1)

2

(
k4 − 1

μ

)(
M + 1 − 2k3 − 2k4

m1,m2 − k3 − μ,m3 − k3 − k4 + μ + 1,m4 − k4

)
.

The key point to notice is that because 2(l∗ + k3 + k4) = M + 1, now the leading term in 1
x

is

(−1)l∗

l∗!4l∗x2l∗

e2x2

2x
√

π
= (−1)(M+1)/2−k3−k4

((M + 1)/2 − k3 − k4)!2(M+1−2k3−2k4)x(M+1−2k3−2k4)

e2x2

2x
√

π
∼ 1

x(M+1−2k3−2k4)

e2x2

2x
√

π
,

which is one order higher in 1
x

compared to the even M case.
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Using Lemma 3,

m1∑
j1=0

(−1)j1

(
m1

j1

) m2∑
j2=0

(−1)j2

(
m2

j2

) m3−k3∑
j3=0

(−1)j3

(
m3 − k3

j3

) m4−k4∑
j4=0

(−1)j4

(
m4 − k4

j4

) 5∑
ν=1

λνPν

= (−1)M−k3−k4m1!m2!(m3 − k3)!(m4 − k4)!

×
[
λ5 +

(
m1 + 1

2

)
λ1 +

(
m2 + 1

2

)
λ2 +

(
m3 − k3 + 1

2

)
λ3 +

(
m4 − k4 + 1

2

)
λ4

]
.

Now ∑
n

x4n

(n!)2
Ln−m1

m1
(x2)Ln−m2

m2
(x2)Ln−m3

m3
(x2)Ln−m4

m4
(x2)

∼ (−1)(M+1)/2e2x2
xM−2 1

2M+2
√

π

m4∑
k4=0

m3∑
k3=0

(−1)k3+k4 22(k3+k4)

k3!k4!((M + 1)/2 − k3 − k4)!

×
[
λ5 +

(
m1 + 1

2

)
λ1 +

(
m2 + 1

2

)
λ2 +

(
m3 − k3 + 1

2

)
λ3 +

(
m4 − k4 + 1

2

)
λ4

]
.

Finally,

Cm1,m2;m3,m4 (β) ∼ −x−2eiφ(m2+m3−m1−m4)
√

m1!m2!m3!m4!(−1)(M+1)/2 1

2M+2
√

π

m4∑
k4=0

m3∑
k3=0

(−1)k3+k4 22(k3+k4)

k3!k4!((M + 1)/2 − k3 − k4)!

×
[
λ5 +

(
m1 + 1

2

)
λ1 +

(
m2 + 1

2

)
λ2 +

(
m3 − k3 + 1

2

)
λ3 +

(
m4 − k4 + 1

2

)
λ4

]

= g(m1,m2,m3,m4, φ)

|β|2 .

In summary, we have thus proved that for large |β|

Cm1m2,m3m4 (β) ∼
{
g(m1,m2,m3,m4, φ)/|β|, ∑4

i=1 mi is even;
g(m1,m2,m3,m4, φ)/|β|2, ∑4

i=1 mi is odd.

In fact our technique can be used to prove the general asymptotic result
∞∑

n=0

1

(n!)2
x4n

∏
i

Ln−mi

mi
(x2) ∼

{
x

∑
i mi−1,

∑
i mi is even;

x
∑

i mi−2,
∑

i mi is odd.
�

[1] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert,
Phys. Rev. Lett. 105, 150401 (2010).

[2] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, New J. Phys.
14, 095022 (2012).

[3] A. Kalev, R. L. Kosut, and I. H. Deutsch, Npj Quantum Inf. 1,
15018 (2015).
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