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Phonon-induced spin squeezing based on geometric phase
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A scheme to achieve spin squeezing using a geometric phase induced by a single mechanical mode is proposed.
The analytical and numerical results show that the ultimate degree of spin squeezing depends on the parameter
nth+1/2
Q

√
N
, which is the ratio between the thermal excitation, the quality factor, and square root of ensemble size. The

undesired coupling between the spin ensemble and the bath can be efficiently suppressed by bang-bang control
pulses. With high quality factor, the ultimate limit of the ideal one-axis twisting spin squeezing can be obtained
for a nitrogen-vacancy ensemble in diamond.
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I. INTRODUCTION

The nitrogen-vacancy (NV) centers in diamond are among
the most promising implementations of quantum bits for
quantum information processing [1] and nanoscale sensors
[2], which is because their ground-state spin triplet possesses
ultralong coherent time at room temperature [3] and can be
read out via optical fluorescence. Significant progress has been
achieved in recent experiments to couple the NV electronic
spins to nuclear spins [4,5] and mechanical resonators [6,7].
The nanoscale magnetometry [8,9], thermometer [10], and
electric field detection [11] have been demonstrated by single
NV or an ensemble.
It is well known that the quantum states can boost the

precision of measurement beyond the standard quantum limit
[12]. Among them, the spin-squeezed states (SSS) [13–16]
have attracted much interest and have been applied to spin
or atom ensembles for atomic clocks and gravitational wave
interferometers. There are many proposals and experiments
to realize the spin squeezing in atom ensembles, such as
atom-atom collisions [17], quantum nondemolition (QND)
measurement [18,19], and cavity squeezing [20–25]. Very re-
cently, spin squeezing of an NV ensemble by Tavis-Cummings
type interaction between phonon and spins [26] has been
proposed for quantum enhanced magnetometry.
In this paper, we propose an approach for the realization of

spin squeezing by phonon-induced geometric phase, using an
ensemble of NV centers dispersively coupled to a mechanical
resonator. It is shown that the ultimate degree of spin squeezing
by one-axis twisting can be realized, for reasonable ratio
between the thermal excitation and the quality factor of
mechanical oscillators. Furthermore, the effect of the coupling
between NV centers and environment is studied, which leads
to dephasing and degrades the spin-squeezing effect. By
introducing the bang-bang pulse sequence, the decoherence
is effectively suppressed and significant spin squeezing can be
achieved for the NV ensemble.
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II. MODEL

The negatively charged NV center (NV−) in diamond
is well studied, whose Hamiltonian reads HNV = (D +
d‖εz)S2z + μBge

−→
S · −→

B [11,27], whereD ≈ 2.87GHz is zero-
field splitting, d‖ and εz are axial ground-state electric dipole
moment and electric field (strain field), respectively, μB is
the Bohr magneton, ge is the electron g factor,

−→
S is the

electron spin operator, and
−→
B is the applied magnetic field.

With appropriate bias field Bz, the two microwave transitions
|0〉 ↔ | ± 1〉 can be addressed separately in experiment,
and we focus on the {|0〉,| − 1〉} by applying near-resonant
microwaves at the transition |0〉 ↔ | − 1〉, which can be treated
as a spin- 12 system in the following. The Hamiltonian can be
written as HNV − = (D + d‖εz − μBgeBz)| − 1〉〈−1|, and we
have ignored the | + 1〉 state.
Putting the NV− spin ensemble in a gradient magnetic field

∂Bz

∂u
	= 0, then the displacement of diamond or nanomagnet δu

will shift the transition frequency by �ωNV = −μBge
∂Bz

∂u
δu

[28], and the interaction Hamiltonian reads HI ∝ σz(a + a†)
with δu ∝ a + a†, where a and a† are annihilation and creation
operators of phonons. Alternatively, the strain field of a
diamond nanomechanical oscillator can induce an electric
field inside the crystal and give rise to a similar phonon-spin
interaction [6,29]. Both approaches to couple the spin with
the nanomechanical oscillator have been demonstrated in
experiments recently [6,7,28–31]. The simplified Hamiltonian
of an ensemble of 2N spins coupled to a mechanical resonator
is

H = ωaa
†a + gJz(a + a†), (1)

where ωa is the frequency of the mechanical resonator,
Jz = 1

2

∑2N
j=1 σzj is the collective spin operator, and g is the

single phonon coupling strength. Along with the progress in
the nanofabrication of diamond material, various diamond
nanomechanical resonators have been realized in experiment,
with frequency ranging from 1 kHz to 1 GHz, and the quality
factor Q ranging from 100 to around 106 [6,29,32–34]. Thus,
we study the spin squeezing induced by the mechanical
resonator with frequency ωa/2π = 1 MHz and coupling
strength g/2π = 1 KHz [35] in this work.
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FIG. 1. (Color online) Trajectories on phase space of a coherent
wave packet 〈a〉 = Re(α)+ iIm(α) for spin state |m〉 with m =
0,±1,±2,±3. Here we set g/ωa as a unit.

The Hamiltonian preserves Jz of the spin ensemble. The
dynamics of the system satisfy the Schrödinger equation
i

∂|ψ〉
∂t

= H |ψ〉, and we can obtain the solution |ψ(t)〉 =
eiφ(t)|α(t)〉 for an initial coherent state |ψ(0)〉 = |α(0)〉, where
φ(t) = −gJzRe

∫ t

0 α(τ )dτ is the geometric phase [36] with
α(t) = α(0)e−iωa t + −gJz

ωa
[1− e−iωat ]. It is convenient to study

the mechanical resonator by the coherent state |α〉, and we
can write |α〉 = |Re(α)+ iIm(α)〉. The coherent state behaves
somehow like classical particles in phase space. Its center,
given by Re(α) and Im(α), follows a classical trajectory, while
the width of these wave packets remains fixed, which is given
by the uncertainty of the Re(α) and Im(α). In Fig. 1 we plot
the usual phase-space trajectories for 〈a〉 = Re(α)+ iIm(α),
and we have used the eigenstates |m〉 of spin operator Jz and
α(0) = 0 as the initial states. We plot phase-space trajectories
only withm = 0, ± 1, ± 2, ± 3 for simple explanation, which
clearly show that the coherent wave packet is restored to its
original state after a fixed time ta = 2π/ωa or integer times
of ta . For different |m|, there are different radius circles in the
phase-space trajectories, and it is the central symmetry for the
opposite m.
The geometric phase, as the enclosed circle area of the

trajectory in phase space, is insensitive to the initial phonon
state [37], which means

∫ ta
0 α(0)e−iωat = 0. Thus, the phonon-

induced geometry phase is robust against the imperfection of
initial phonon state preparation, and we assume α(0) = 0 for
simplicity. However, the decay and thermal noise of phonons
during the spin-phonon interaction will influence the geometry
phase accumulation. In this case, the system dynamics follows
the master equation

dρ

dt
= −i[H, ρ]+ γ

2
(nth + 1)L(a)ρ + γ

2
nthL(a†)ρ. (2)

Here γ = ωa/Q describes the decay rate of the mechanical
mode, nth is the mean phonon number of the mechanical ther-
mal noise, and L(o)ρ = 2oρo† − o†oρ − ρo†o is the Lindblad
superoperator for given jump operator o. The reduced density
matrix of the collective spin can be written as

ρspin =
∑
m,n

ρm,n(0)e
φm,n(t)|m〉〈n|. (3)

φm,n(t) is the phase difference between these spin states. The
phase can be solved as

φm,n(t) = −
(

nth + 1

2

)
(n − m)2

×
{
γ

∫ t

0
| α(τ ) |2 dτ+ | α(t) |2

}

+ ig(n2 − m2)Re
∫ t

0
α(τ )dτ. (4)

Here, the amplitude of mechanical resonator is α(t) =
−ig

γ /2+iωa
[1− e−(γ /2+iωa )t ] [37]. The finite γ of the mechanical

resonator introduces decoherence and leads to the first term
of the above equation; the second term corresponds to the
interaction J 2z inducing spin squeezing. Molmer and Sorensen
proposed an approach for an ion trap to realize the spin
squeezing, which is insensitive to the initial thermal phonon
states [38]. Compared to the Molmer-Sorensen scheme in
which two-laser pumping and the Lamb-Dicke approximation
are required [38], our approach utilizes stable spin-phonon
interaction and there is no approximation in our model.

III. SPIN SQUEEZING

The spin squeezing is evaluated by the squeezing parameter
[13,16]

ξ 2N = min
(
�J 2�n⊥

)
N/2

, (5)

where �J 2�n⊥ is the variance of spin operators along the
direction perpendicular to the mean-spin direction �n0 =
�J/|〈 �J 〉|, which is determined by the expectation values
〈Jα〉, with α ∈ {x,y,z}. For an atomic system initialized
in a coherent spin state (CSS) [39] along the x axis,
satisfying Jx |ψ(0)〉atom = N |ψ(0)〉atom, we have ρm,n(0) =
2−2N

√
(2N)!

(N−m)!(N+m)!
(2N)!

(N−n)!(N+n)! and �J 2�n⊥ = N/2. Thus, for

squeezed spin states we have ξ 2N < 1.
First of all, we studied the spin squeezing by Eq. (3) without

thermal noise. The squeezing parameters ξ 2N as a function of
the time (dimensional number gt) for various quality factorsQ
are plotted in Fig. 2(a). As expected, the effect of the phonon-
induced geometry phase leads to the twisting and squeezing
of the CSS, thus the ξ 2N decreasing with time. After a certain
optimal t , the ξ 2N increases, due to the overtwisting by the
geometry phase, and a high order effect arises. It is shown that
the minimal value of the spin-squeezing parameter decreases
with higher mechanical quality factor Q. When the quality
factorQ = 1000 (the black solid line), the almost perfect spin
squeezing for the ideal one-axis twisting can be achieved.
Including the mechanical thermal noise, squeezing parameters
ξ 2N as functions of the time with the quality factor Q = 1000
are plotted in Fig. 2(b). It is natural that the spin squeezing
becomes worse with the increasing of the thermal noise nth.
We also studied the suppression of the influence of thermal
noise by improving the quality factorQ. As shown in Fig. 2(c),
the optimal spin squeezing [the minimum value of the ξ 2N (t)]
is plotted against the Q for nth = 200, which means that the
thermal temperature T ≈ 10 mK. The ξ 2N reduces withQ and
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FIG. 2. (Color online) (a) The squeezing parameter ξ 2N as a
function of the time for nth = 0 and variousQ = 5, 10, 1000 (top to
bottom). (b) The squeezing parameter ξ 2N as a function of the time for
Q = 1000 and various nth = 100, 50, 0 (top to bottom). (c) The green
solid line is optimal squeezing parameter ξ 2N versus the quality factor
Q for nth = 200 (T ≈ 10mK), and the red dashed line is the result for
ideal one-axis twisting spin squeezing. N = 10 for all simulations.

approaches the limit for ideal one-axis twisting spin squeezing
(red dashed line).
To understand these results, we simplified the spin-state-

dependent geometric phase

φm,n(t) = i|g|2ωat

(γ /2)2 + ω2a
[(m2 − n2)+ iμ(m − n)2], (6)

under the approximation t � γ −1, which means α(t) =
−ig

γ /2+iωa
and the transient evolution of the mechanical resonator

is neglected. Here, the dimensionless factor μ = nth+1/2
Q

. The
first term accounts for the coefficient proportional to the time
t , and the two terms within the bracket correspond to spin
squeezing and decoherence, respectively. Then, we can obtain
the degree of spin squeezing for the initial state CSS along the
x axis

ξ 2N = 1+ 2N − 1
4

(A −
√

A2 + B2), (7)

where

A = 1− cos2N−2(2Ct)e−4Cμt ,

B = −4 sin(Ct) cos2N−2(Ct)e−4Cμt . (8)

Here, Ct = g

ωa

1
1+1/4Q2 gt . The analytical solution implies that

the spin squeezing ismainly determined by the two dimension-
less parameters Ct and μ. For Q � 1, we have 1

1+1/4Q2 ≈ 1.

For N � 1, we can apply the approximation cos2N−2 (x) ≈
e−(N−1)x2 for x � 1. So, the time required (gt ≈ 160 in Fig. 2)
to achieve the optimal spin squeezing scales with 1√

N−1 . From
Eq. (7), we obtain the approximated upper bound of the

optimal spin squeezing ξ 2N � 1− e
− 1
2−4 μ√

N /(1− e
−1−2 μ√

N ),
which indicates that the ratio μ√

N
= nth+1/2

Q
√

N
should be as

small as possible. As long as nth+1/2
Q

√
N

< 10−3, we can achieve

squeezing almost as good as the best squeezing achievable
with ideal single axes twisting [Fig. 2(c)].

IV. BANG-BANG CONTROL

During the preparation of optimal SSS, there are inevitable
couplings between the system and baths. For example, the
lattice vibrations and environment spins will induce dephasing
and destroy the spin squeezing. The dynamical decoupling
technique is well known for protecting coherence from
environment [40–47], and now we apply the bang-bang (BB)
pulses [40] to suppress the decoherence. The sequence consists
ofM pulses, which split the total time interval t intoM small
intervals tp = p

M
t with p = 1,2, . . . ,M . The pulses rotate the

collective spin states around the y axis, and we chose the
pulse sequence to rotate π and −π alternately, which leads
to eiπJy σzj e

−iπJy = −σzj and eiπJy J 2z e−iπJy = J 2z . Therefore,
the spin squeezing J 2z is conserved while the σz is inverted
by the BB pulses. Considering the 2N qubits which are
independently coupled to thermal baths, the Hamiltonian from
Eq. (1) is changed to

H ′ = ωaa
†a + gε(t)Jz(a + a†)+

∑
k

ωkb
†
kbk

+
2N∑
j=1

∑
k

ε(t)σzj

2
hkj (bk + b

†
k). (9)

Here, bk and b
†
k are the creation and annihilation bosonic

operators of the kth bath mode, which couples to the j th spin
with coupling strength hkj . The switch function ε(τ ) due to BB
pulses is given by ε(τ ) = ∑M

p=1(−1)pθ (τ − tp)θ (tp+1 − τ )
with θ (t) the Heaviside step function.
With the decoherence and BB, the geometry phase factor

[Eq. (4)] of spin states is solved as

φ′
m,n(t) = −

(
nth + 1

2

)
(n − m)2

×
{
γ

∫ t

0
| α′(τ ) |2 dτ+ | α′(t) |2

}

+ ig(n2 − m2)Re
∫ t

0
ε(τ )α′(τ )dτ − κm,n(t). (10)

Here, α′(t) = −ig
∫ t

0 ε(τ )e−( γ

2 +iωa )(t−τ )dτ and κm,n(t) is due
to the decoherence. Assuming that the baths to each spin are
Ohmic [48] and have the same spectral density ηωe− ω

ωc , we
have

κm,n(t) � (|n − m| + 2)
∫ ∞

0
G(ω)FM (ω,t)dω, (11)

where the modulation spectrum is FM (w,t) =
tan2 ( ωt

2M+2 )[1+(−1)M cos (ωt)]
ω2

, the temperature-dependent

interacting spectrum is G(ω) = ηωe− ω
ωc ( 2

eλω−1 + 1) [46],
in which η is the coupling strength between the system and
the bath modes, ωc is the cutoff frequency, and λ = 1/κBTb

is the inverse temperature. This time-dependent dephasing
is a non-Markovian process [49], which is a constant under
the Markovian approximation [26]. In order to simplify the
calculation, we use the upper limit instead of the κm,n(t).
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FIG. 3. (Color online) (a) The squeezing parameter ξ 2N as a
function of the time gt . The parameters are η = 0, M = 0 (black
line), η = 4× 10−4, M = 0 (red line), and η = 4× 10−4, M = 500
(blue line). (b) The blue solid line for the optimal squeezing parameter
ξ 2N versus the pulses M for η = 4× 10−4, and the black dashed line
for the result without thermal baths. Other parameters are nth = 200
(T ≈ 10 mK), ωc = g, λ = 4/g,Q = 20 000, and N = 10.

In Fig. 3(a), we numerically calculated squeezing param-
eter ξ 2N as a function of time for various η and M . Since
the decoherence term κm,n(t) is proportional to the coupling
strength between the system and the bath modes, we observe
the increment of the optimal ξ 2N for increasing η (black and red
lines). The blue line shows the suppression of decoherence by
BB, and here we choose the sequence number M = 500 and
η = 4× 10−4, which is in contrast to the red line. There are
periodic peaks with the separation distance �gt = π , and the
peak values are obtained when gt = (n + 1/2)π ; n is integer.
This phenomena can be interpreted as follows: the BB pulse
period is tM = t/M , and the time period for the phonon state
trajectories in the phase space (Fig. 1) is ta = 2π/ωa . For
M = 500 and ωa/g = 1000, we have tM/ta = gt/π . When
gt/π = n is integer, the geometric phase is always cumulative,
and the coherent spin squeezing effect is not degraded by
the BB pulse sequence. In contrast, when gt/π = n + 1

2 , the
geometric phase imprints alternating sign as function ofM , and
then the spin squeezing is weakened. Comparing the minima
of ξ 2N with BB (blue line) to the results without BB (black and
red lines), the undesired effect of decoherence is effectively
suppressed by the dynamical decoupling. Figure 3(c) shows
the optimal ξ 2N versus the pulse sequence length M . With
increasing M , the optimal value of ξ 2N is improved and

approaches the black dashed line, which is the ideal result
determined by Eq (6) without thermal baths. WhenM � 400,
the influence of thermal baths on spin squeezing can be almost
eliminated, which means κm,n(t) ≈ 0.

V. EXPERIMENTAL REALIZATION

The possible experimental configurations are a diamond
nanostring oscillator and diamond nanocrystal adhering to
a cantilever. For the first approach, the diamond nanostring
with nanoscale cross section can be fabricated with the
approaches in Ref. [32], with frequency above 1 MHz and
quality factor as large as 105. For the second approach, a
diamond nanocrystal can be attached to a cantilever [7,28]
and close to a nanomagnet, the cantilever frequency around
1 MHz and quality factor exceeding 104. For both approaches,
NV− centers can be generated by ion implantation in diamond
nanocrystal or at selected location of the diamond nanostring.
A reasonable density can be about 100 ppm, leading to the
spin ensemble of N ∼ 20 in a 10× 10× 10 nm3 volume of
diamond. As the spin squeezing depends on the dimensionless
parameter T/Q

√
N , we can relax the requirement for low

temperature by increasing the mechanical Q or the ensemble
size.

VI. CONCLUSION

An approach to achieve spin squeezing by phonon-induced
geometric phase is proposed. This scheme is feasible for exper-
iments on a solid state spin ensemble coupled to a mechanical
oscillator.With reasonable parameters, the ultimate limit of the
ideal one-axis twisting spin squeezing can be achieved as long
as the quality factor is sufficiently high thatQ >

nth+1/2√
N

× 103.
The decoherence due to spin-bath coupling can be effectively
suppressed by the bang-bang pulses. This geometric-phase-
based spin squeezing can be used to significantly improve
the sensitivity of magnetic sensing with nitrogen-vacancy spin
ensembles. Moreover, the technique can be generalized to spin
ensembles coupled to other high-Q bosonicmodes that prepare
quantum states by geometry phase.
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Treutlein, Nature (London) 464, 1170 (2010).

[18] S. Chaudhury, S. Merkel, T. Herr, A. Silberfarb, I. H. Deutsch,
and P. S. Jessen, Phys. Rev. Lett. 99, 163002 (2007).

[19] R. Inoue, S.-I.-R. Tanaka, R. Namiki, T. Sagawa, and Y.
Takahashi, Phys. Rev. Lett. 110, 163602 (2013).

[20] M. Ueda, T. Wakabayashi, and M. Kuwata-Gonokami, Phys.
Rev. Lett. 76, 2045 (1996).

[21] M. Takeuchi, S. Ichihara, T. Takano,M. Kumakura, T. Yabuzaki,
and Y. Takahashi, Phys. Rev. Lett. 94, 023003 (2005).

[22] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Phys. Rev.
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