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Abstract
We investigate the usage of highly efficient error correcting codes ofmultilevel systems to protect
encoded quantum information from erasure errors and implementation to repetitively correct these
errors. Our schememakes use of quantumpolynomial codes to encode quantum information and
generalizes teleportation based error correction formultilevel systems to correct photon losses and
operation errors in a fault-tolerantmanner.We discuss the application of quantumpolynomial codes
to one-way quantum repeaters. For various types of operation errors, we identify different parameter
regionswhere quantumpolynomial codes can achieve a superior performance compared to qubit
based quantumparity codes.

1. Introduction

Aquantum erasure channel replaces a qubit (qudit)with an ‘erasure state’ that is orthogonal to all the basis states
of a qubit (qudit)with a certain probability, thereby erasing the qubit (qudit) and enabling the receiver know that
it has been erased [1]. Physically, erasure errorsmay occur in various situations, such as leakage to other states
[2–4], atom losses [5], and photon losses [6–9]. For ion-trap systems, leakage processes occurwhen the qubit
moves out of the idealized two-level sub-space to a larger space [2–4]. For quantummemories with optical
lattices, back ground gas collisions can eject the atoms leading to atom losses [5]Photon losses occur in linear
optical quantum computing schemes [6] due to absorption in optical interconnects or opticalfiber.
Undoubtedly, protecting quantum information from erasure errors is a significant challenge for practical
quantum computation and long distance quantum communication.

Specifically, for long distance quantum communiction through opticalfibers, photon losses lead to an
exponential penality in resources and time. The exponential penality can be overcome by establishing
intermediate repeater stations and actively correcting for erasure and operation errors at these stations. Three
generations of quantum repeaters have been proposed based on the different approaches used to correct erasure
and operation errors [10]. Thefirst generation employs heralded entanglement generation between neighboring
repeater stations to correct erasure errors and entanglement purification to correct operation errors [11].
Heralded entanglement generation needs two-way classical communication between neighboring repeater
stations, while entanglement purification needs two-way classical communication between remote repeater
stations. The second generation [12–15] employs heralded entanglement generation to correct erasure errors
and quantum error correction to correct operation errors. Quantum error correction does not require any form
of two-way classical communication. The third generation uses quantum error correction to correct both loss
and operation errors, and avoids any formof two-way classical communication between repeater stations,
thereby rendering ultrafast communication over transcontinental distances [16–21]. Since erasure errors are
actively corrected in these repeater schemes, it is crucial to investigate quantum error correcting codes that can
correct erasure errors very efficiently [22–25]. So, far only quantumparity codes (QPC) have been optimized for
third generation quantum repeaters [17, 26].

Due to the quantumno-cloning theorem [1], no error correcting code can correct erasure errors
deterministically when the erasure rate is above 50%.There have been significant advances in searching for
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quantum codes that can correct up to 50% erasure error rates. Varnava et al [22] showed that by using tree-like
cluster states for encoding, one can correct erasure errors when erasure rate is close to the 50%bound for one-
way quantum computation. Stace andBarrett [23, 24]demonstrated that surface codes can also correct erasure
errors when error rates are close to 50%.However, qubit based codes often require large code size to enable the
correction of a large fraction of erasure errors.

Quantum error correcting codes of higher-dimensional systems provide a promising alternative to qubit
based encoding schemes to correct erasure errors. For example, quantumpolynomial codes (QPyC) [27, 28] are
a class of CSS codes that were introduced in the context of fault-tolerant quantum computation [27] and shown
to be useful for constructing threshold quantum secret sharing schemes [28]. One can encode a secret qudit into
k2 1qudits (with prime dimension d k2 1) and distribute one qudit to each of themany parties, so that
at least k 1( ) of them should get together to reconstruct the secret. Thismakes the k k2 1, 1, 1 d[[ ]]
QPyC a good choice for the correction of erasure errors up to a fraction of k k2 1 50%( ) for a large k.

This paper is organized as follows: wefirst perform a comparison between 3, 1, 2 3[[ ]] code and the

4, 2, 2[[ ]]code. In section 3, we investigate the ability of general QPyC to correct erasure errors and compare
them to surface codes. In section 4, we show thatQPyC can be used for third generation (or one-way) quantum
repeaters.We also compare our quantum repeater schemewith other schemes based onQPC [17, 26] in the
presence of operation errors. Here, we identify the parameter regimeswhereQPyCperforms better thanQPC.
The price for this improved performance against erasure errors is thatmore complexmulti-mode operations
must be implemented for encoding and readout operations. In section 5, we discuss the key experimental
techniques needed for the physical implementation of our scheme and provide potential experimental
procedures based on atommediated photonic gates formultilevel systems.

2. Three-qutrit code versus four-qubit code

To illustrate how the error correction for erasure errors works, consider the four-photon 4, 2, 2[[ ]]code that
maps two qubits into the logical states [25, 29],
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where the subscripts 1–4 denote qubits 1–4.Here, 0∣ and 1∣ corresponds to a single photon occupying two
differentmodes such as polarization or time-bin states ‘01’ and ‘10’ respectively. The [[4, 2, 2]] code requires a
total of four pairs ofmodes (eightmodes) and four photons. The loss of a photon leads to the vacuum state of the
associated pair ofmodes, which corresponds to an erasure error. Supposewe transmit the encoded state through
a channel and it undergoes one photon loss (i. e. erasure of one of qubits), then the quantum error correcting
code enables the reconstruction of the encoded state as follows. First, we use quantumnon-demolition
measurement to extract the total excitation number for each pair ofmodes (without destroying the qubit), which
will be one if there is no photon loss, or zero if the photon is lost. Hence, the photon loss can be identified as an
erasure error of the associated qubit. For example, if the first qubit is erased, to reconstruct the encoded state we
apply twoCNOTgates betweeen qubits 3 and 2, and qubits 4 and 2 respectively. Then, wemeasure qubit 2 in the
Z basis and and use themeasurement outcome to reconstruct the logical state. This can be seen by studying the
logical operators of the 4, 2, 2[[ ]] code, X IXIXL

1( ) , X IZIZL
2( ) , Z IIZZL

1( ) and Z IIXXL
2( ) . After the

CNOTgates, the logical operators are transformed into IIIX, IZZI, IIZZ and IIXX respectively. After the gates, a
Z-measurement on the second qubit is needed to decode the 4, 2, 2[[ ]]code.We refer the readers to [25], where
an alternative non-destructivemethod has been proposed to recover the logical qubits. It has been proven that
we need at least four qubits to correct one erasure error [30].

Alternatively, one can also correct an erasure error using a 3, 1, 2 3[[ ]] codewhich encodes a logical qutrit
into three physical qutrits as [28],

2
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where the subscripts 1–3 represent qutrits 1–3.Here, we note that each qutrit represents different time bin states
and not photon number.More specifically, 0∣ , 1∣ and 2∣ represent temporalmodes ‘001’, ‘010’ and ‘100’
respectively. So, the 3, 1, 2 3[[ ]] code requires a total of three triplets ofmodes (ninemodes) and three photons.
Photon loss leads to the vacuum state of the corresponding triplet ofmodes, which can identified as the erasure
error of the associated qutrit. If qutrit is erased, it is possible to reconstruct the encoded qutrit by performing an
additionmodulo 3 operation between the other two qutrits. For example, for the incoming state

0 1 2L L L∣ ∣ ∣ , if thefirst qutrit is erased, then the state of second and third qutrits is given by

, 3
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Using two additionmodulo 3 operations4 between qutrits 2 and 3, and then between qutrits 3 and 2, we can
reconstruct the encoded state.

We now compare the 3, 1, 2 3[[ ]] code and the 4, 2, 2[[ ]]code for different loss rate per photon, pl. Since
each logical qutrit can carry log 32 qubits of information, wemultiply a factor of log 32 when computing bits/
photon and bits/mode for 3, 1, 2 3[[ ]] code. As illustrated in figure 1(a), the bits/photon is always higher for the

3, 1, 2 3[[ ]] code compared to the 4, 2, 2[[ ]]code for all loss rates pl.With regard to the bits/mode, for large loss
rates p 42%l( ), the 3, 1, 2 3[[ ]] code performs better than the 4, 2, 2[[ ]]code. In principle, by concatenating
the 3, 1, 2 3[[ ]] code, it is possible to supressmore erasure errors.However, to be resource efficient wewill
consider the generalization of the 3, 1, 2 3[[ ]] codes—QPyC in the forthcoming section.

3.Quantumpolynomial codes

The qutrit 3, 1, 2 3[[ ]] code can be generalized to d-level (d is a prime number) qudit system as a
k k2 1, 1, 1 d[[ ]] code, which encodes one logical qudit into k2 1physical qudits and can correct up to k

erasure errors [28]. TheQPyC code is a CSS code and the encoded states of theQPyC code are given by [27, 28],

Figure 1. (a)A comparison between bits/photon that can be achievedwith 3, 1, 2 3[[ ]] code and 4, 2, 2[[ ]] code respectively. (b)A
comparison between bits/mode that can be achievedwith 3, 1, 2 3[[ ]] code and 4, 2, 2[[ ]] code respectively.

4
An additionmodulo 3 operation refers to a SUMgate here is described in detail in the section 4.

3
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yielding the 3, 1, 2 3[[ ]] code (see equation (3)). The success probability of recovering the encoded quantum
information after it has undergone erasure errors is given by
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Note that for a reasonable code size, it is possible to achieve substantially low (e.g. 10−5) failure rate
P P1fail success

QPyC even in the presence of high erasure rate pl. Note that with about 40 qudits one can suppress
the failure rate to 10−6 for 20% erasure rate.

It can be seen from equation (6) that at p 50%l , P 1 2success
QPyC independent of the code size. Further, note

that the success probability of error correction has a phase transition behaviorwith k , P 1success
QPyC for

p 50%l and P 0success
QPyC for p 50%l . One can obtain the critical exponent of phase transition by noting
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yielding a critical exponent of 2.
Wewill now compare the performance ofQPyCwith surface codes [24] for the correction of erasure errors.

Surface codes consists of aD×D square lattice with 2D2 qubits in total, where each qubit located on the edges of
the square lattice. The logical operatorsXL (ZL) of the surface codes are given by the product ofX (Z) operators
along a non-trivial homological cycle connecting the boundaries [24]. Therefore, the success probability of bond
percolation in the square lattice and its dual lattice [22] is essentially the same as the probability of decoding the
surface code. It is well known that the bond percolation threshold is 50% for a square lattice,meaning that as the
distance of the lattice D , P 1success

SC for p 50%l and P 0success
SC for p 50%l .

Infigure 2(b)we study the success probabilities of surface codes with three different distances
D 3, 7, 11( ) andfind that at p 50%l , P 0.30success

SC , while infigure 2(a)we see that P 0.5success
QPyC for all

code sizes. Therefore, when pl is around 50%,QPyC of any code size always outperforms surface codes. Further,
it can be seen infigure 2(b) that threshold for surface codes withD= 3 is about 37%, and the threshold
approaches 50% for larger code sizes, while the threshold ofQPyC is 50% for all code sizes. In practice, wemight
operate the codes at a loss probabilitymuch lower than 50%.Hence, we assume p 20%l and compare the

surface code andQPyCwith k2 2 1D k2 2 12 ( )( ) so that they have a similarHilbert space dimension for
physical encoding. As illustrated in table 1, for smaller code sizes surface codes performs better thanQPyC and
with D 9 and k 15, QPyCoutperforms surface codes with a smaller failure probability.

4. Application in quantum repeaters

One-way (or third generation) quantum repeaters [10, 16, 17, 26, 31] rely on quantum error correction to relay
data fromone repeater station to the next. At each station, error correction operations are performed before the

4
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message is transmitted to the next station. Recently, it has been shown thatQPC [17, 26, 32] (a generalization of
the 4, 1, 2[[ ]]code) can correct erasure errors efficiently by teleportation based error correction (TEC). Since
QPyC corrects a larger fraction of erasure errors, it is reasonable to considerQPyC instead ofQPC for one-way
quantum repeaters, and expect a significant improvement for resource consumption and key generation rates.

4.1. Implementation of error correction for erasure errors
For qubit encoding schemes, it has been shown that TEC [33, 34] is an effective approach for the correction of
erasure and operation errors. Since teleportation requiresX andZmeasurements on qubits, error correction for
erasure and operation errors is possible if we can reliablymeasure the logical operatorsXL andZL of the error
correcting code [26]. For example, the 4, 2, 2[[ ]]code has stabilizersXXXX andZZZZ and the following logical
operators: X IXIX XIXI,L

1( ) , X IZIZ ZIZI,L
2( ) , Z ZZII IIZZ,L

1( ) and Z IIXX XXII,L
2( ) . If any qubit

undergoes an erasure error, all theXL operators andZL operators can bemeasured in the TEC circuit and the
encoded qubits can be retrieved. For example, if the first qubit is lost, one can calculate the operators
X IXIXL

1( ) , X IZIZL
2( ) , Z IIZZL

1( ) and Z IIXXL
2( ) and retrive the encoded qubits.We generalize TEC to

multilevel systems infigure 3 by using generalized Paulimatrices that act on d-level system as X j j ll∣ ∣
and Z j jl lj∣ ∣( ) , i j d0 , 1 [35] and SUMgate that acts on a control qudit i∣ with a target qudit j∣ to
produce the transformation i j i i j dmod∣ ∣ ∣ ∣( ) [35]. Consider the 3, 1, 2 3[[ ]] codewith stabilizers
XXX,ZZZ andXL operator that corresponds to one of the operators IXX XX I X IX, ,2 2 2 andZL operator that
corresponds to one of the operators IZ Z ZIZ Z ZI, ,2 2 2 . It can be readily seen that in the presence of an erasure
error on any qutrit one can stillmeasure the corresponding logical operator and reconstruct the encoded state.

4.2. Errormodel for operation errors
Suppose that each physical qudit is encoded into a k k2 1, 1, 1 d[[ ]] QPyC and is transmitted through
repeater stations, where the TEC is implemented.We assume independent errors acting on physical qudits and
consider an extensive errormodel with the following types of errors acting on the encoded qudit as follows:

Figure 2. (a) Success probability ofQPyC for different erasure rates. (b) Success probability of decoding surface codeswith three
different distances (3, 7, 11).

Table 1.A comparison between the failure
probabilities of error correction ( P1 success) for
surface codes andQPyCwith a similar size of the
Hilbert space for 20% erasure rates. All values
were calculated for surface codeswith a total of
106 runs.

D k Surface code QPyC

5 6 0.0068 0.007

7 9 9.37 10 4 0.0016

9 15 1.2 10 4 8.8 10 5

11 21 1.3 10 5 5.23 10 6

5
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(i) The photon arrives at each repeater stationwith probability p1 el

L
L

0
att , where L0 is the repeater spacing

and L 20 kmatt is the attenuation length of thefiber.

(ii) The photon undergoes depolarization with a probability d. For simplicity, we assume that this is also the
probability of error on each physical qudit of the encoded Bell pair prepared at the repeater station.

(iii) The photon experiences an additional dephasing in thematter qubit-photon couplingwith a probability p.

(iv) Each SUM gate acting between the encoded Bell pair and the incoming qubit (see figure 3) fails at a
probability g.

By further assuming the same probabilities for all types of depolarization errors and gate errors, the transmission
channel with the incoming single qudit stateA takes the form,
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Similarly, the imperfect gate between the incoming qudit A and qudit B at repeater station can bemodeled as
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For each qudit the locally prepared logical states 0 L∣ and jL j
d

0
1∣ ∣ , we assume it undergoes

depolarization, which can bemodeled as
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In contrast to the errormodels in [10, 26], we track the errors in the preparation of the logical Bell state needed
for TEC. From these error channels, we can calculate the probability of having an error in any one of the
measurements up to the first order as

d
d d
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d d
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d d
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3 4
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2
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Once the encoded state k k2 1, 1, 1 d[[ ]] is transmitted fromone repeater station to its neighbor, there
exists three possibilities at the receiving repeater station

(i) More than k photons are lost in transit and the outcome of the measurement cannot be found leading to a
heralded failure with probability P P1fail success

QPyC .

(ii) At least k photons are received, but the encoded state is not decoded correctly due to the presence of many
operation errors and the encoded state is not decoded correctly with probability Pincorrect.

(iii) At least k photons are received to make an encoded X/Z measurement and the encoded state is decoded
correctly with probability Pcorrect.

Figure 3.TEC circuit formultilevel systems, where erasure and operation (X andZ) errors in L∣ are corrected. The states 0 L∣ and
jL j

d
0
1∣ ∣ should be prepared fault-tolerantly and free from erasure errors. ‘S’ refers to an encoded SUMgate that acts on logical

qudits i L∣ and j L∣ as i j i i j dmodL L L L∣ ∣ ∣ ∣( ) . The encoded SUMgate has pairwise implementation forCSS codes.

6
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The probability that a heralded failure does not happen at any one of the r repeater stations is given by, P r
success
QPyC[ ] .

Let us suppose that n1 photons are lost before the destination. Among the rest of the k n2 1 1( ) photons that
reach the destination, n2 photons suffer operation errors. As such, the code can correct up to n n k21 2

errors. The probability of successfullymeasuring the encodedX/Zmeasurement outcomes is given by,
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The probability of incorrect decoding of the qudit is given by,

P
k

n

k n

n

p p

2 1 2 1

1 1 . 15

X Z
n

k

n

k n

n
X Z
n k n

X Z
k n n

incorrect
0

2 1

1

1

2

l l
2 1 2 1

k n
1 2 2

1
2

1
2

1

1 2 1 1 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟⎡⎢ ⎤⎥

( ) ( ) ( ) ( )

( )

It is easy to verify that P P P 1X Z X Z X Zfail correct incorrect( ) ( ) ( ) . Bymaking a pessimistic assumption that
an effective logical error in any one of the repeater stations is an overall logical error at the receiver’s end, the
logical error rate of the encoded quantum information can be defined conditioned on the success of receving
enough photons as,

Q
P

P
1 . 16X Z

X Z
r

r

correct

success
QPyC

[ ]
[ ]

( )( )

For the two basis protocol for quantumkey distribution (where information is encoded in only two logical bases
X1 andZ1), the asymptotic normalized secure key generation rate is [36].
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Infigure 4(a), we study the dependence of the secure key generation rateRt0, with respect to the total distance
of communication for small encoded blocks ofQPyC, assuming 1 km repeater spacing and no operation errors.
For t 1 s0 , 3 qudits are sufficient to reach 700 kmwith key generation rates R 10 kHz.We can increase the
total range of communication to 10 000 kmby using 7 qudits and obtain a key generation rate R 1000 kHz.
As the operation errors involvedwith the error correction g d p increases, P X Zincorrect( ) increases
exponentially after a certain distance Ltot andwe can expect a quick decay of R t. 0 over a certain Ltot. The
maximumQ that theQPyC can tolerate depends on the dimension d of the code.We can check that
Q 0.15, 0.21, 0.237max for the 3, 1, 2 3[[ ]] code, 5, 1, 3 5[[ ]] code and 7, 1, 4 7[[ ]] codes respectively for the
codes to yield non zero key generation rates. Taking only the leading terms into account in equation (14), we can
approximate P p3 1X Z X Zincorrect l

3( )( ) for the 3, 1, 2 3[[ ]] code, P p p4 1X Z X Zincorrect l
5

1 l
4( )( )( )

for the 5, 1, 3 5[[ ]] code and P p p5 1X Z X Zincorrect l
2 7

2 l
5( )( ) ( )( ) for the 7, 1, 4 7[[ ]] code respectively.

Further, since Pfail for 1 km spacing is negligible, we should have P QL

Lincorrect max
tot

0
, yielding

L
Q L

P P

2
. 19

X Z
tot,max

max 0

incorrect incorrect

( )
( ) ( )

For example, for 10 4, L0= 1km,we get L 120 km, 440 km, 1900 kmtot,max for 3, 1, 2 3[[ ]] ,
5, 1, 3 5[[ ]] and 7, 1, 4 7[[ ]] codes respectively as confirmed by the ‘×’ lines infigure (4). Infigures 4(b)–(d), we

study the variation of R t. 0 for varying operation errors 10 , 10 , 10g d p
6 5 4 for 7, 1, 4 7[[ ]] ,

5, 1, 3 5[[ ]] and 3, 1, 2 3[[ ]] codes respectively.Wefit the points obtained froma rigorous theoretical calculation
with the approximate Pincorrect mentioned above (shown as gray curve infigure 4) and observe a goodmatch
between them.

4.3. ComparisonwithQPC
Wecan compare the performance of different quantum codes for one-way quantum repeaters by considering
both the qubit and temporal resources consumed by the code, respectively. In order to compareQPyC codes,
which usemultilevel systems, withQPCof qubits, we consider the conversion of a d-level qudit into dlog2

⎡⎢ ⎤⎥
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qubits and compare the performance of the codes by a cost coefficient [26]

C
k d

L R
min

2 2 1 log
qubits km sbit s. 20

k L
q

,

2

00

⎡⎢ ⎤⎥( )
( )

The Cq is obtained from the product of qubit resources and temporal resources. The number of qubits used for

TEC at every repeater station is given by k d2 2 1 log2
⎡⎢ ⎤⎥( ) and the number of qubits for all stations is

k d L L2 2 1 log2 tot 0
⎡⎢ ⎤⎥( ) ( ) . The temporal resource used by the scheme is simply the inverse of key generation

rate, i.e. R1( ). Since, the product of qubit and temporal resources varies at least linearly with Ltot, we further
divide the product by Ltot to obtain the cost coefficient, which stands for the number of qubits required per km
for the generation of one secure bit in 1 s.

Wefind that the present schemewithQPyC can achieve a very small cost coefficient, which is about 5 times
less than forQPCwith TEC for L 10 000tot km in the absence of operation errors. Note that in addition to the
local resource overhead, we can also save the number ofmodes considerably by usingQPyC instead ofQPC (see
appendix). In the presence of operation errors, the comparison between qubit and qudit based schemes forQRs
depends largely on the errormodel because of the complexity involved in the implementation ofmultimode
operations. Although it is challenging to compare the resource requirements between these codes, we have
attempted to ensure a fair comparison by assuming that the operation errors increase with dimension d of the
qudit.We assume that dg g

4, dd d
2, and dp p for the comparison. Infigure 5, we

investigate the variation of the ratio of cost coefficients C CQPC QPyC with respect to total distance of

communication Ltot.We consider only one of the errors g , d and p respectively in each one of the plots and
show the variation of the ratio of the cost coefficients with respect to Ltot and the corresponding d picked by the
optimization of the cost coefficient shown in the colored contour. As the operation error increases, the ratio
decreases andQPCbecomesmore favorable thanQPyC shown in the area above the break-even contour line
(shown as thickened line) as the number of levels d increases. Since g scales as d

4 and d k2 1, the
optimization is forced to choose a smaller code for large total distances infigures 5(a) compared tofigures 5(b)
and (c).

Figure 4. (a)The key generation ratesR.t0 that can be achievedwith small blocks ofQPyC in the absence of operation errors with 1 km
repeater spacing between the repeater stations with 7, 1, 4 7[[ ]] (blue), 5, 1, 3 5[[ ]] (yellow) and 3, 1, 2 3[[ ]] (red) codes. (b)–(d) R t. 0

in the presence of operation errors 10 , 10 , 10g d p
6 5 4 for 7, 1, 4 7[[ ]] (b), 3, 1, 2 3[[ ]] (c) and 5, 1, 3 5[[ ]] (d)

codes. The gray line corresponds to the approximation taking only the leading terms into account.
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5. Physical implementation

For the implementation of quantum repeaters withQPyC encoding schemes, we can consider time-bin
photonic qudits. The time-bin qudit has a single photon excitation in a superposition of d time-bins, which can
be efficiently generated at telecomwavelengths and coupled into an opticalfiber [37]. The TEC circuit, which is
essential of our scheme, requires single quditX- andZ-operation, two-qudit SUMgate,X- andZ-measurement
of qudits. The SUMgate can be further decomposed usingControlled Z (CZ) gate and Fourier gates [35].

For the time-bin qudits, theZ-operation andZ-measurement can be implemented by a selectively phase
shifting or detection at different time slots.X-operation andX-measurement can be achieved bymaking a strong
dispersivemedium that interferes different time-bins as detailed below. For the two-qudit gate, the direct
photon–photon interaction is negligible due toweak single photon nonlinearity. Therefore, we propose to use a
nanophotonic-atom interference to store andmanipulate the photonic qudits and tomediate photon–photon
qudits gate.

The feasible experimental system adapted from [38] is illustrated infigure 6(a). A single atom is trapped in
the vicinity of afiber integrated photonic crystal nanocavity, single photons can be efficiently coupled to the
nanocavity using the tapered fiber, which strongly interacts with the atomdue to the very smallmode volume of
the nanocavity.

Figure 5.Contour plots (a), (b) and (c) show the improvement factor ofQPyCwith respect toQPC, C CQPC QPyC, when the
imperfections are dominated by the two-qudit gate error dg g

4, qudit depolarization error dd d
2 and qudit dephasing

error dp p respectively. The optimal d chosen by the optimization (of C ) is shownwith different colors in the same plots. The
contour area below the break even contour line (shownwith thicker line) indicates the area whereQPyCperforms better thanQPC.
Contour plots (d)–(f) show the variation of optimized cost coefficients Cq for different dominant errors. Here, it is assumed that it
takes the same time to create small encoded block of qubits (qudits).
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Based on the nanophotonic atom interface, we can implement the Fourier ( F ) [35] andX-gates of single
time-bin qudit by downloading the photonic time-bin qudit to the atom, and using photonic-atomic qudit
control phase (CZ) gate. Based on these elementary gates, theX-measurement can be realized by the
combination of F-gate andZ-measurement. The photon–photon qudit SUMgate can be realized by a sequence
of Fourier gate on photon qudits and twoCZ gates between photon and atom. In the following, we provide the
details about experimental implementation of the above element gates: (1) F andX gate of single qudit, (2) the
photon-atomqudit CZ gate, (3) the atommediated photon–photon gates between time-bin qudits. Based on
these three building blocks, QPyC can be corrected for erasure and operation errors using TEC and
retransmitted to the neighboring station.

To illustrate the procedure, we consider the simplest case of qutrits.We choose theD2 lines of natural Rb87

atoms [39], with the transitions between hyperfine levels S S F m5 , 1, 1, 0, 1F0,1,2
2

1 2∣ ∣ and
P F m5 , 2, 0, 1, 2F

2
3 2∣ . In addition, we use the A S F m5 , 2, 2F

2
1 2∣ ∣ as an ancillary state for

processing the photonic qutrit. As illustrated infigure 6(b), we apply a tunable externalmagnetic field to
introduce a relative frequency shift depending on hyperfine levels, whichwill be useful for the atom-photon
coupling gate.

5.1. Single quditF andX gates
Since it is difficult tomake anX-measurement on a time-bin photonic qutrit, we propose to transfer the
quantum state from the time-bin photonic qutrit to either amultilevel atomormultiple two-level atoms. First of
all, withmicrowave driving of transitions between F= 1 and F= 2 levels and also optical pumping, the single

Rb87 atom can be initialized to the ancillary state. Then, for single photon input to the cavity, it will be largely
detuned from the transitions of the atoms. By applying an external laser drivingwith frequency sR R,
where R is the energy difference between A∣ and S1∣ , through a stimulated Raman adiabatic passage [40], the
populationwill be transferred to S1∣ if there is a single photon in the incoming time-bin, as shown infigure 6(b).
By a sequence ofmicrowave pulses, the populationwill bemapped to Sj∣ according to the order of input time-
bin. This process effectivelymaps the state of the time-bin qutrit to the atom’s ground state levels. After that, we
can carry out anX-measurement by performing a Fourier transformation followed by aZmeasurement on the
atom.Alternatively, it is also possible to store the time-bin qutrit intomultiple atoms and control the process by
synchronized pulse sequences on individual atoms.

This procedure can be generalized to time-bin qudits d 3( ) in a straightforward fashion.When the time-
bin qudits are stored in atoms, arbitrary single qudit operations can be realized by applying either optical or
microwave pulses. In themost general case, arbitrary unitary on single d‐level system can be constructed by a
series of SU(2) gates between any two of d levels (calledGivens rotations) [41]. Alternatively, the arbitrary unitary
can be realizedwith optimal controlled pulse sequences. For the qutrit case, there aremore efficient schemes that
only requires three steps, by either threeGivens rotation or threeHoulsehould’s reflections [42]. Recently,

Figure 6. (a)The schematic of a single atom trapped close to a photonic crystal nanocavity and the time-bin photonic qutrit input
from thefiber interactingwith the atom. (b)The energy diagramof transfer of the quantum state of a time-bin qutrit to an atom. The
atom state is initialized to the A∣ , the input photon and the strong driving (red arrow) are detuned from the excited state by R . Laser
pulse followed by a jointmicrowave pulse is applied tomap the state of the time-bin qutrit to the atom. (c)The energy diagramof the
CZ gate between photonic qutrit and atom.
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arbitrary unitary on d= 16 hyperfine energy levels of Cs133 atomhas been demonstrated [43]. Two-qudit gates
between atoms can bemediated by cavity photons. Generalization of such techniques [42]will enable the
generation of the encoded Bell states needed for the TEC at repeater stations.

5.2. CZ gate between photonic and atomic qudits
To realize CZ gate between the time-bin photonic qutrit and the atom,we prepare the atom in the superposition
of Si∣ . Due to the strong cooperative interaction between the atomand nanocavity photon, the incoming single
photon pulse input to the systemhave the reflectivity as [38]

r
1 2i

1 2i
, 21( )

where η is the atom-photon interaction cooperativity, δ is the frequency detuning between the pulse and atomic
transition frequency and γ is the excited state decay rate. For a large 100( ), r ei and 2 arctan 2 . Due

to themagnetic field, the photon detuning j for different Sj∣ gradually reduces with j, corresponding to a
atomic state dependent phase shift as shown infigure 6(c).

TheCZ gate can be represented as C m m Um a m,∣ ∣ , where m 0, 1, 2 denoting the states of
photonic qutrits andUa m, is photon state dependent phase gate. The gate can be realized by the following three
steps:

(i) For the first incoming pulse, all energy levels are detuned from the cavity mode by controlling external bias
magnetic field such that 0 1 2 thenwe have an operation on the atomic energy levels
asU diag 1, 1, 1 .a,0 { }

(ii) For the second pulse, magnetic field is tuned to have 3 20 , 01 and 3 22 , so that

the phase shift is 2 3, 0 and 2 3,U diag e , 1, e .a,1
i i2

3
2
3{ }

(iii) For the third pulse, the magnetic field is reversed, so that the phase shift is 2 3, 0 and 2 3,
thenU diag e , 1, e .a,2

i i2
3

2
3{ }

The generalization of theCZ gate to higher dimensional qudits d 3( ) is less straightforward compared to
time-bin storage. One possible realization is using the cavity coupledmultipleΛ-type atoms (each atom is an
effective two-level system). Suppose there are d atoms and each has ground states g∣ , s∣ and excited state e∣ , the
transition g e∣ ∣ is near resonancewith cavitywhile s e∣ ∣ is far off-resonance. In addition, the transition
frequencies of atoms can be controlled by external electric ormagnetic field individually. First, the atoms are
initialized to ss s∣ , and transition frequencies are on-resonancewith cavity. By single photonRaman
transition of the atom ensemble, the states of atoms are prepared to the one-excitationDicke state

gs s sg s ss g
d

1 (∣ ∣ ∣ ). Then, the CZ gate of d-level time-bin qudit can be realized by

shifting the transition frequencies of individual atoms: for ith (i=1,K, d) pulse input to the system, the jth
( j=1,K, d) atom is tuned to be near-resonance on the cavity so that the reflected pulse gains a phase
of e j2i i 1 1

d
( )( ).

5.3. CZ gate between time-bin qudits
ACZgate can be realized between two physical time-bin photonic qudits by a generalization of theDuan–
Kimble scheme [7]. TheCZ gate between two time-bin photonic qutrits ( f and s) can be realized by preparing the
atomic state in a equal superposition of all energy levels and applying three photon-atomCZ gates
(C m m Uf s m f s a m, , ,∣ ∣ with m 0, 1, 2 denoting the states of photonic qutrits) and two Fourier gates
( F ) on atoms as [27]

U C F C FC , 22CZ f s f
1 1 1 ( )

where,

F
1

3

1 1 1

1 e e

1 e e

. 23i i

i i

2
3

4
3

4
3

8
3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

The atomic state initialization and Fourier gates of atoms can be realized bymicrowave or optical Raman pulsed
controlled transitions ( S S0 1∣ ∣ and S S1 2∣ ∣ ) and phase gateZ.

For qudits with d 3, the Fourier gate of atoms can be realized by virtual cavity photonmediated atom–

atom interaction, where strong pumping is applied on the s e∣ ∣ transition, with the detuning equals to that
between cavity photon and g e∣ ∣ . Based on this procedure and theCZ gate between photonic and atomic
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qudits d 3( ) described in the previous section, theCZ gate between two time-bin qudits can be realized using
a similar technique as equation (22).

6. Conclusion

Wehave investigated efficient codes usingmultilevel systems that can correct up to 50% erasure error rates,
which is the bound set by the no-cloning theorem [1]. The success probability ofQPyC close to 50% erasure
rates is higher than the success probability of surface codes of all code sizes.We employedTEC that can correct
erasure errors up to the threshold efficiently and discussed its application for the construction of highly efficient
one-way quantum repeater networks. In comparisonwithQPC,we have obtained an improvement in resources
by about 5 times for communication across 10 000 km in the absence of operation errors and numerically
identified the parameter regime, where theQPyCperformbetter thanQPC in the presence of operation errors.
We have discussed the physical implementation ofQPyC and identified the key technological requirements. It
will also be interesting to consider the experimental implementation ofmultilevel systems using oscillators [44],
Rydberg atoms [45] and ensembles ofmultilevel systems [46].Moreover, we can extend the coding schemes to
continuous variables for the correction of erasure errors [47, 48]. Besides quantum communication, quantum
error correcting codes formultilevel systems that can correct a large fraction of erasure errorsmight be useful for
improving precisionmetrology [49–53].
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Appendix

In themanuscript, we have assumed that we are only limited by the qubit resources rather than the optical
modes of the fiber channel. If qubit resource is no longer the limiting factor for one-way quantum repeaters, we
should then compare the number ofmodes needed for different repeater schemes. For quantum state transfer
using time-bin qudits, each qudit needs d temporalmodes for transmission. Therefore, the cost coefficient based
on the number ofmodes for the transmission of photons is given by,

C L
k d

L R
min

2 1
modes km sbit s. 24m

k L
tot

, 00

( ) ( ) ( )

Infigure 7, we compare the cost coefficients Cm ofQPyC andQPC. ForQPC, since each qubit needs two
temporalmodes for transmission the numerical values of Cq and Cm are the same. ForQPyC, the numerical

Figure 7.The cost coefficient Cm based on the number ofmodes forQPC andQPyC.
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value of Cm is increased by a small factor compared to Cq.We find that for L 10 000tot km,QPyC achieves a
cost that is about 3 times less thanQPC.
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