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The detection of weak magnetic fields with high spatial resolution is an important problem in diverse areas ranging from fundamental
physics and material science to data storage and biomedical science. Here, we explore a novel approach to the detection of weak
magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum
bits. Specifically, we investigate a magnetic sensor based on nitrogen-vacancy centres in room-temperature diamond. We discuss
two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear
spins and an optical magnetic-field imager combining spatial resolution ranging from micrometres to millimetres with a sensitivity
approaching a few fT Hz−1/2.

Over the past few decades, a wide variety of magnetic
sensors have been developed using approaches including
superconducting quantum interference devices1 (SQUIDs), the
Hall effect in semiconductors2, atomic vapour and Bose–Einstein
condensate based magnetometry3–8 and magnetic resonance
force microscopy9–11. Here, we present a novel approach to
high-spatial-resolution magnetic-field detection, using systems
currently explored as quantum bits: isolated electronic spins in
a solid. We focus on spins associated with nitrogen-vacancy colour
centres in diamond12 (Fig. 1a,b), because they can be individually
addressed, optically polarized and detected, and exhibit excellent
coherence properties even at room temperature13–15. Recently,
coherent control of nitrogen-vacancy electronic spin qubits has
been used to sense and manipulate nearby individual electronic16,17

and nuclear spins18 in a diamond lattice. In what follows, we
describe how such a system can also be used for the precision
sensing and imaging of external magnetic fields.

We discuss two types of potential implementation of such
sensors. First, a single sensing spin confined in a nanoscale
region can be brought in direct proximity to a magnetic-field
source, such as an electron or nuclear spin. For example, a
diamond nanocrystal (10–20 nm in size) containing a single
nitrogen-vacancy centre can be attached to a tip of a scanning
probe19 (Fig. 1c) such as that of an atomic force microscope.
Second, a bulk diamond sample with a high density of
nitrogen-vacancy centres can be used to sense fields created by
remote objects with ultrahigh sensitivity and submicrometre spatial
resolution (Fig. 1d).

MAGNETOMETRY WITH SINGLE ELECTRONIC SPIN QUBITS

The operating principles of our approach are closely related
to those of magnetometers based on spin precession in atomic
vapours. In particular, detecting the relative energy shift induced
by a magnetic field b between two Zeeman sublevels enables
precise determination of an applied d.c. or a.c. magnetic field.
Ultimately, sensitivity is determined by the spin coherence
time and by the spin projection noise. Although solid-state
electronic spins have shorter coherence times than gaseous atoms,
quantum control techniques can decouple them from the local
environment and from each other, as we show below, leading to
a substantial improvement in their sensitivity to external, time-
varying magnetic fields, while retaining the desirable features of a
robust solid sensor.

The canonical approach to detecting a Zeeman shift uses a
Ramsey-type sequence as shown in Fig. 2a. A π/2-pulse creates a
superposition of two Zeeman levels, which acquire a relative phase
φ ∝ (gμB/h̄)bτ from the external field b during the free evolution
interval τ (here μB is the Bohr magneton and g ≈ 2 for nitrogen-
vacancy centres). Another π/2-pulse transforms the relative phase
into a population difference, which is measured optically and from
which the Zeeman shift is inferred. For small φ, the magnetometer
signal S (proportional to the induced population difference)
depends linearly on the magnetic field: S ≈ (gμB/h̄)bτ. During
the total averaging interval T , T/τ measurements can be made,
yielding a shot-noise-limited sensitivity η given by the minimum
detectable field, bmin ≡ η/

√
T ≈ (h̄/gμB)(1/

√
τT).
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Figure 1 Overview of a diamond-based magnetometer. a, Level structure of a
single nitrogen-vacancy centre. The nitrogen-vacancy-centre’s ground state is a
spin triplet with aΔ= 2.87GHz crystal field splitting and a Zeeman shift δω.
Under the application of green light (∼532 nm), the nitrogen-vacancy centre initially
exhibits spin-dependent photoluminescence, even at room temperature, enabling
optical detection of electronic spin resonance. After continued illumination, the
nitrogen-vacancy spin is pumped into the ground state ms = 0. b, Crystal
structure of diamond with a (111) nitrogen-vacancy centre. A static bias field B⊥ is
applied perpendicular to the 111 axis, and small magnetic fields aligned with the
111 axis are detected as the signal. c, A nanocrystal of diamond at the end of a
waveguide for photon collection, with resolution limited by the size of the crystal.
d, A macroscopic sample of diamond, with resolution limited by optics, enables high
spatial resolution and signal-to-noise. A green laser produces spin-dependent
photoluminescence, detected by measuring red light imaged onto a CCD.

Increasing the interrogation time τ improves the sensitivity
until random (environmental) perturbations lead to decay of the
free-precession signal. In the case of solid-state spin systems, the
coherence is limited by interactions with nearby lattice nuclei and
paramagnetic impurities, resulting in an ensemble dephasing time
T∗

2 . Furthermore, there will be a finite number of fluorescence
photons collected and detected, leading to extra photon shot noise,
and a finite contrast to the Ramsey fringes. We describe these effects
by a single parameter C ≤ 1, which approaches unity for ideal,
single-shot readout (see Methods section). The optimum sensitivity
of a magnetometer based on a single electronic spin, achieved for
τ ∼ T∗

2 , is given by

ηd.c. ≈ h̄

gμBC
√

T∗
2

.

For current experiments15, with detection efficiency ∼10−3,
C ≈ 0.05 and T∗

2 ∼ 1 μs. This yields an optimal sensitivity
∼1 μT Hz−1/2. Improving the collection efficiency by using a
tapered fibre or a plasmonic waveguide20 to η ∼ 5% yields C ≈ 0.3
and leads to a sensitivity ∼120 nT Hz−1/2.

Coherent control techniques can improve the sensitivity for a.c.
fields. Owing to the long correlation times characteristic of dipolar
interactions between spins in systems such as diamond—the
principal source of dephasing—spin echo techniques can markedly
extend the coherence time. Specifically, by adding an extra
microwave π pulse to the Ramsey sequence at time τ/2, the
Hahn echo sequence (Fig. 2a) removes the effect of environmental
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Figure 2 Control sequences for various operation modes of the magnetometer
and corresponding sensitivities to magnetic fields. a, ESR pulse sequences for
magnetometry, where x and y indicate the linear polarization of the ESR pulse in the
laboratory frame. Left: Ramsey pulse sequence for d.c.-field measurement.
Middle: Echo-based pulse sequence for a.c. magnetometry π/2|x −π|x −π/2|y .
Right: CPMG-based pulse sequence for improved a.c. magnetometry
π/2|x (−π|x −π|x−)ncπ/2|y , where nc is the number of repetitions of the paired π
pulses. For small accumulated phases, a signal linear in the field can also be
obtained with all pulses along the x direction if a reference field Bref sin(2πt/τ ) is
added. b, d.c. and a.c. sensitivity to magnetic fields for a single nitrogen-vacancy
centre as a function of signal frequency, ν. Also shown is the expected performance
of CPMG composite pulse sequences, with the optimum nc as described in Methods
section. Parameters used assume carbon-13-limited coherence with T ∗

2 = 1μs
(ref. 13), T2 = 300μs (ref. 15), tm = 1μs, C= 0.3, T1 = 20ms (ref. 18) and an
error per pulse of 1%.

perturbations with a correlation time that is long compared
with τ. Thus, a signal field b(t) oscillating in-phase with the
pulse sequence produces an overall additive phase shift, leading
to a total phase accumulation, δφ = (gμB/h̄)[∫ τ/2

0
b(t) dt −∫ τ

τ/2
b(t) dt]. For a signal field of frequency ν and initial phase

ϕ0, b(t) = b sin(νt + ϕ0), this yields δφ = (gμB/h̄)bτf (ντ,ϕ0),
with f (x, ϕ0) = (sin2(x/4)cos(x/2+ϕ0)/x/4). In essence, the
spin echo enables us to extend the interrogation time τ from the
limit set by T∗

2 up to a value T2 that is close to the intrinsic spin
coherence time, at the cost of a reduced bandwidth and insensitivity
to frequencies ∼<1/T2. For maximal response to continuous-wave
signals with known frequency and phase (assuming small b), we
find τ = 2π/ν and ϕ0 = 0 to be optimal. For signals with a time
dependence that is a priori unknown, it is useful to measure
the signal variance, which provides equivalent performance (see
Methods section). In either case, the sensitivity is improved by
≈√

T∗
2 /T2:

ηa.c. ≈ πh̄

2gμBC
√

T2

.

The optimum sensitivity is achieved only for fields oscillating
near ν ∼ 1/T2. However, these results can be easily extended to
higher frequency signals. In particular, for signal field oscillation
periods shorter than the dephasing time, the interrogation time
need not be restricted to the duration of one period, but can
be multiples of it. Then, composite pulse sequences such as
the Carr–Purcell–Meiboom–Gill21 (CPMG) sequence may perform
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better at the expense of a reduced bandwidth. Furthermore, in
ultrapure samples where nuclear spins’ evolution leads to decay
of the echo signal, the long correlation time of the nuclei leads
to non-exponential decay of the echo signal22,23. In this case,
the CPMG sequence can increase the interrogation time, further
reducing the minimum detectable field (see Fig. 2 and Methods
section). Finally, another way to improve the magnetometer
sensitivity is to use many sensing spins, where we can take
advantage of the relatively high achievable density of spins in the
solid-state (∼1017 cm−3) compared with atomic magnetometers
(∼1013 cm−3) (ref. 24).

IMPLEMENTATION WITH NITROGEN-VACANCY CENTRES

We now discuss specific details of magnetometry using
nitrogen-vacancy centres in diamond, developing an appropriate
operating regime and determining the optimal sensitivities possible
for current experimental technology. The fine structure of the
electronic ground state of a nitrogen-vacancy centre, shown in
Fig. 1a, is a spin triplet. The crystal field splits the ms = ±1
Zeeman sublevels from the ms = 0 sublevel by Δ= 2π×2.87 GHz,
enabling the use of electron-spin resonance (ESR) techniques
even at vanishing external magnetic field. Furthermore, under
application of green light, nitrogen-vacancy centres exhibit a
transient, spin-dependent fluorescence, which enables optical
detection of the spin. After the transient signal decays, the system
optically pumps into the ms = 0 state, which prepares the system
for the next measurement (see Methods section).

As a specific example, we focus on magnetometry in low
external static magnetic fields (≤10 mT). In this case, Δ is the
largest energy scale and sets the spin quantization axis parallel to the
nitrogen-to-vacancy direction. The secular Hamiltonian, including
a small external field B(t) = (Bx ,By ,Bz), is

H= h̄ΔS2
z + gμBBz Sz ,

where Bz is the component of the magnetic field along the nitrogen-
vacancy-centre’s axis and Sz takes the values ms = 0,±1. Terms
proportional to the perpendicular field are suppressed to order
∼B2

x,y/Δ and do not depend on the field Bz being measured, and
therefore may be neglected.

At low magnetic fields, the ms = ±1 manifold can be used to
implement a vector magnetometer, sensitive only to components of
the magnetic field along the centre’s axis. We focus on the ms =±1
manifold as it has twice the energy splitting of the 0–1 manifold
and is less affected by nuclear spin-induced decoherence at low
fields, because internuclear interactions are suppressed by the large
hyperfine field25.

Coherent control of the nitrogen-vacancy-centre’s spin states
is obtained using an ESR magnetic field oscillating at angular
frequency Δ. ESR pulses linearly polarized along the x axis
rotate the nitrogen-vacancy spin between the two-dimensional
subspace of |0〉 and |+〉 = (|1〉+|−1〉)/√2. To manipulate |±1〉
superpositions, extra control can be provided by a background
oscillating reference field [Bref sin(2πt/τ)] along the z axis.
Specifically, Bref = (h̄/gμB)π

2/8τ yields an optimal phase offset to
achieve a magnetometer signal linear in the field strength (Fig. 2).

The sensitivity as a function of the signal frequency for both
a.c. and d.c. detection is plotted in Fig. 2. For diamonds where
natural abundance (1.1%) carbon-13 nuclei are the principal cause
of dephasing, T∗

2 ∼ 1 μs and T2 ∼ 300 μs (ref. 18). Again using
current experimental parameters, with C ≈0.05, and measurement
and preparation time tm ≤ 2 μs, we can optimize the sensitivity
as a function of τ. Including corrections from decoherence with
expected signal decay (see Methods section) ∝exp[−(τ/T2)

3],

we find: ηa.c. = (πh̄/2gμB)e(τ/T2 )3√
τ+ tm/Cτ. We obtain optimal

sensitivity of ηa.c. ≈ 18 nT Hz−1/2 for a single nitrogen-vacancy
centre using current experimental collection efficiencies. Improved
collection efficiencies (C = 0.3) would yield ηa.c. = 3 nT Hz−1/2.
Note that spin T1 relaxation occurs on timescales much longer than
milliseconds and may be safely neglected18. Finally, the observed
dephasing times are independent of temperature from 4 to 300 K,
owing in part to the vanishing polarization of the nuclear bath at
small magnetic fields.

When more than one nitrogen vacancy centre exists in the
sample, they can belong to four different crystallographic classes,
each corresponding to the centres’ alignments along different (111)
axes. To operate as a vector magnetometer along a controlled
direction, a transverse (d.c.) magnetic field B⊥ ≥ 0.3 mT (see
Methods section) detunes the other three classes’ levels such
that the ESR field used for quantum control excites only spins
with the desired crystallographic orientation, perpendicular to
the external field. Thus, one in four spins contributes to the
magnetometer signal.

MAGNETOMETRY IN THE HIGH-DENSITY LIMIT

A principle advantage of our approach over other spin precession
magnetometers is the high achievable density n of sensing spins.
This improves the sensitivity to fields that are homogeneous
over the magnetometer volume, because the projection noise
per unit volume decreases as 1/

√
n. Nitrogen-vacancy centres

can be created in controlled densities by implanting high-purity
diamond with nitrogen ions and subsequently annealing the sample
to recombine the nitrogen with vacancies26. Assuming an initial
nitrogen concentration ∼1018 cm−3 with a conversion f ∼ 0.1 to
nitrogen-vacancy centres17,26,27, we expect it will be feasible to create
diamond crystals with a nitrogen-vacancy-centre density exceeding
∼1017 cm−3, with an average distance between centres of less
than 10 nm. Even at these densities, effects such as superradiance
do not have a role owing to the large spectral width of the
nitrogen-vacancy fluorescence.

At high spin densities, nitrogen-vacancy paramagnetic
impurities and nitrogen-vacancy/nitrogen-vacancy interactions
may limit the sensitivity of the magnetometer. In particular,
substitutional nitrogen impurities with one bound electron (P1
centres) become a sizable source of dephasing in high-density
samples28,29. The dipole–dipole interaction between these centres
has a characteristic timescale Tc ≡ (1/αnepr), where α is
of the order of the dipole coupling between electron spins,
(μ0/4π)(gμB)

2/h̄ ≈ 3.3 × 10−13 s−1 cm3 and nepr is the density of
paramagnetic impurities. Qualitatively, this timescale corresponds
to the rotation time of a single paramagnetic spin in the presence
of the random field from the other paramagnetic centres. The
timescale for interaction between this impurity bath and a given
nitrogen-vacancy centre will be of the same order of magnitude.
This suggests an exponential decay of spin echo coherence on
a timescale Tc (see Methods section), in contrast to single
nitrogen-vacancy-centre-based sensing, where nearby nuclear spins
limit the coherence time.

To evaluate the effects of paramagnetic impurities, we assume
a density n of nitrogen-vacancy centres and nepr = n(1 − f )/f of
paramagnetic impurities, where f is the conversion factor described
above. The relevant figure of merit is the sensitivity per root volume
ηV

a.c. = ηa.c.

√
V . We find

ηV
a.c. =

h̄

gμB

πe(τ/T2,Carbon )3

C
√

n τ
×eτ/Tc ,

where we have taken into account that the sensing centres
account for only one fourth of the nitrogen-vacancy centres
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Figure 3 Sensitivity per root volume (ηV
a.c. ) at high nitrogen-vacancy-centre density, for the a.c.-field echo measurement scheme. a, Contour plot of

log10η
V in T Hz−1/2 cm3/2 as a function of nitrogen-vacancy-centre density and signal field frequency. b, Sensitivity at the optimal field frequency, as a function of

nitrogen-vacancy-centre density; the black curve is the sensitivity for f= 0.1, whereas the blue and red curves are for f= 0.05 (higher paramagnetic impurity density)
and 0.5 (lower paramagnetic impurity density), respectively. Parameters used correspond to T2,carbon = 300μs (ref. 15), tm = 1μs, C= 0.3 and α = 3.3×10−13 s−1 cm3.

in the sample. Here, we include both dephasing due to a bath
of dipolar-coupled nuclear spins and the paramagnetic spin
bath just discussed. In the high nitrogen-vacancy density and
low-f regime, T2,Carbon > Tc > T∗

2 , that is, carbon-13 is no
longer the limit to echo lifetimes, but still limits inhomogeneous
broadening. Then the optimum magnetometer sensitivity
becomes: η̃V

a.c. = (h̄π/gμBC)
√

2αe(1− f )/f . For f = 0.1 and
T2,Carbon = 300 μs, the optimum sensitivity is independent of
the nitrogen-vacancy density over the range n � 1015–1017 cm−3,
as is seen in Fig. 3a, and reaches a maximum sensitivity
value η̃V

a.c. ∼ 250 aT Hz−1/2 cm−3/2 for C = 0.3. However, the
optimum echo time depends on the nitrogen-vacancy density,
τ = f /[(1− f )2nα], with higher density samples requiring higher
detection frequencies. Finally, for n  1017 cm−3, corrections
due to finite preparation, control and measurement times can
become important, and lead to the limitations in sensitivity at
high nitrogen-vacancy density seen in Fig. 3a.

To push the sensitivity limits beyond the cutoff imposed by
paramagnetic impurities, we can exploit more advanced forms
of dynamical decoupling30 than spin echo. With appropriate
external time-dependent controls, the system can be made to
evolve under an effective, time-averaged Hamiltonian that is
a suitable symmetrization of the undesired interactions. For
example, driving the P1 centres through spin resonance at a
rate much faster than the intrinsic decorrelation time, Tc, acts
as a rapid spin echo for the nitrogen-vacancy centres without
affecting the nitrogen-vacancy-centre’s magnetic-field-sensing
capabilities. Furthermore, improving implantation and conversion
techniques (by optimizing implant energies27 or by using cold
implantation31) could increase the ratio of nitrogen-vacancy
centres to paramagnetic impurities. When the conversion efficiency
exceeds 50%, interactions between nitrogen-vacancy centres
become the primary source of noise, with a dephasing32 ∝(αnτ)2.
The coupling between the sensing nitrogen-vacancy centres is a
Sj,z Sk,z interaction that is not removed with spin echo. However,
by using collective rotations driven by appropriate ESR pulses, the
interaction can be successively rotated through the x,y and z axes
for an equal time duration33; so that on average the spins will
experience an isotropic Hamiltonian, which commutes with the
signal perturbation and thus allows the spin evolution necessary for
magnetometry34. Pulse sequences such as MREV35,36 (an eight-pulse
refocusing sequence introduced by Mansfield, Rhim, Ellis and

Vaughan) can induce the desired evolution, and will be necessary
in the high nitrogen-vacancy-centre density limit.

SINGLE-SPIN DETECTION WITH A NANO-MAGNETOMETER

Nitrogen-vacancy magnetometers can be applied to an outstanding
challenge in magnetic sensing: the detection and real-space imaging
of small ensembles of electronic and nuclear spins, with the
long-term goal of resolving individual nuclear spins in a molecule.
As the magnetic field from a single dipole decreases with distance as
∼1/r3, a magnetometer that can be brought into close proximity of
the field source offers a clear advantage. A diamond nanocrystal or
a single nitrogen-vacancy centre near the surface of a bulk crystal
within a scanning set-up37–39 would enable a spatial resolution
limited only by the distance between the nitrogen-vacancy centre
and the object of study, not by the wavelength of the fluorescence
signal. For example, consider a prototype system consisting of
a crystal with a single nitrogen-vacancy centre at a distance
r0 ∼ 10 nm from the surface of the crystal. At this distance, the
dipolar field from a single proton is BH � 3 nT, which is well within
the projected limits for a single nitrogen-vacancy centre.

To examine a practical method to measure the magnetic field
from a single spin, we consider a material with a varying nuclear
spin density ns that is brought in close proximity (a distance ∼r0) to
the nitrogen-vacancy centre. At realistic temperatures, the thermal
nuclear spin polarization of the material will be small. However,
because only a few spins are involved, the distribution of spin
configurations leads a large variance in the spin polarization40,
providing a substantial, albeit randomly oriented, magnetic field
to be detected by the nitrogen-vacancy magnetometer. We find
(see Methods section) that the field magnitude measured by
our sensor will be characterized by a variance Br.m.s. ∼ BH

√
N ,

where N ∼ 8πnsr3
0 is the effective number of spins contributing

to the signal. This indicates that our prototype system has an
effective spatial resolution determined only by the distance of the
nitrogen-vacancy centre from the surface of the sample material,
assuming we can position the sensor relative to the sample with
stability much better than r0.

At nuclear spin densities ∼<1018 cm−3, there is on average one or
fewer nuclear spins in an effective sensing volume with r0 ∼ 10 nm.
Hence, in this case, single spins could be measured. However,
most organic molecules have substantially higher proton densities
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Figure 4 Illustration of high-spatial-resolution magnetometry with a diamond
nanocrystal. a, The dipolar fields from spins in the sample decay rapidly with
distance; only those within a distance ∼ro contribute to the observable signal for a
point-like detector (such as a single nitrogen-vacancy centre in a nanocrystal,
shown by the blue dot). The inset shows how Bmax and Br.m.s. are related; when few
spins are involved, the statistical fluctuations become large. b, In the presence of a
magnetic-field gradient (field lines in grey), only a small region of the detection
volume is precessing at the frequency band centre of the detector, enabling even
higher spatial resolution.

(∼1022–1023 cm−3). To measure only one proton at a time would
require a further improvement in spatial resolution. In this case,
a magnetic-field gradient can be used, which enables conversion
of high spectral resolution to high spatial resolution. Using similar
techniques to those used in magnetic force resonance microscopy9,
a magnet near the surface of a substrate can produce gradient fields
of ∼>106 T m−1 (Fig. 4b). The narrow bandwidth of our detector,
∼4 kHz (∼ 1/T2), enables it to spectrally distinguish two protons
separated by a magnetic-field difference of 0.1 mT, corresponding
to physical separation of 0.1 nm. This implies that individual
proton detection may be possible even in organic and biological
molecules. The narrow bandwidth associated in particular with the
CPMG approach (see Methods section) enables different isotopes
to be distinguished, owing to their unique gyromagnetic ratios.
More generally, our approach enables the detection of nanoscale
variations in the chemical and physical environment.

We note that the present approach can surpass the sensitivity
of SQUID1, Hall-bar2 and recently proposed optically-pumped
semiconductor-based41 nano-magnetometers by more than an
order of magnitude, with 10–2,000 times better spatial resolution.
The ultimate limits to miniaturization of nitrogen-vacancy-centre
nano-magnetometers, which are probably due to surface effects, are
not yet well understood.

IMAGING OF MACROSCOPIC MAGNETIC FIELDS

In contrast to the nano-magnetometer approach outlined above, a
macroscopic crystal of diamond containing many nitrogen-vacancy
centres may be used as a high-sensitivity imaging magnetometer
with large field-of-view and optical wavelength-limited spatial
resolution. As an example system, we consider a crystal of diamond
with a high density of nitrogen-vacancy centres. The signal
from nitrogen-vacancy centres in a diffraction-limited setting,
where a CCD (charge-coupled device) might be used to image
the crystal, is divided into separate ‘pixels’, with each pixel
corresponding to a ∼(1 μm)3 volume element of the crystal. For
nitrogen-vacancy-centre densities of ∼1015–1017 cm−3 and C = 0.3,
each pixel would have ∼100 pT Hz−1/2 a.c. sensitivity. This spatial
resolution is comparable to micro-SQUID magnetometers but
with four orders of magnitude higher magnetic-field sensitivity42.
In such a scenario, diamond crystals could range from tens
of micrometres to millimetres in size, and be physically

integrated with fibre-based optics for a robust and practical
magnetic-field imager.

Larger detector volumes further improve the sensitivity for
whole-sample measurements. For example, a (3 mm)2 × 1 mm
thick crystal can achieve an overall sensitivity of 3 fT Hz−1/2

with millimetre resolution. Reducing the ratio of paramagnetic
impurities to nitrogen-vacancy centres could potentially lead to the
detection of attotesla fields, opening the prospect of improved tests
of fundamental symmetries and physical laws.

The high magnetic-field sensitivity in a small volume offered
by solid-state spin qubits such as nitrogen-vacancy centres in
diamond can find a wide range of applications, from fundamental
physics tests or quantum computing applications to detection
of NMR signals, surface physics and material science, and
medical imaging and biomagnetism. Recently, proof-of-principle
experimental demonstrations of such a sensor have been carried
out by members of our collaboration43 and other groups44. Further
extensions could include the use of non-classical spin states,
such as squeezed states induced by the spin–spin coupling. The
sensitivity could also be improved by using synthesized, isotopically
purified diamond containing a lower fraction of carbon-13, the
main cause of dephasing at moderate nitrogen-vacancy densities,
and by developing more efficient nitrogen-vacancy-centre creation
techniques that do not result in high densities of paramagnetic
impurities. On a more general level, these ideas could apply to a
variety of paramagnetic systems or other types of solid-state qubit
that are sensitive to different perturbations.

METHODS

ESR CONTROL TECHNIQUES
The spin triplet of the nitrogen-vacancy centre has a V-type level configuration.
An external microwave field tuned to the Δ = 2.87 GHz resonance with
its magnetic field linearly polarized along the x axis drives transitions
between |0〉 and the superposition |+〉 = (|1〉+ |− 1〉)/√2, whereas the
state |−〉 = (|1〉− |−1〉)/√2 is dark—it is decoupled from the field owing
to destructive quantum interference. Application of a magnetic field aligned
with the nitrogen-vacancy-centre z-axis perturbs the interference, and enables
complete quantum control of the spin triplet. In an echo sequence appropriate
for magnetometry using the |+〉 and |−〉 states, the traditional π/2−π−π/2
structure is replaced by π−2π−π: the first pulse creates |+〉, the second
induces a relative π-phase shift between |+〉 and |−〉 and the third converts
|+〉 to |0〉 while leaving |−〉 population trapped in the ms = ±1 manifold. We
remark that for external fields in excess of a few milliteslas it may be more
convenient to use the 0–1 manifold, as two different resonance frequencies
would be necessary for using the ±1 manifold in this regime.

A.C.-FIELD MEASUREMENT SCHEME AND BANDWIDTH
a.c.-field detection requires synchronization of the pulse sequence with the
external magnetic-field oscillations. When this is not practical or if the field
phase ϕ0 varies randomly in time, successive measurements will give random
readings distributed over the range of the function f (ντ,ϕ0) (given in the main
text) resulting in a zero average signal. In this situation, information about
the field intensity is contained in the measured signal variance, provided the
random phase correlation time τϕ satisfies: τ � τϕ < T . (If τϕ > T , the total
averaging time, the scheme presented in the main text could be used.) For
τ = 2π/ν and a uniformly distributed ϕ0, 〈f (2π,ϕ0)

2〉= 2/π2 and the standard
deviation of the measured signal is: (gμB

√
2/h̄π)bτ, whereas the noise has

a contribution from the uncertainty in the variance equal to 21/4/π. The
sensitivity is thus worsened only by a factor

√
2(1+√

2/π2) ≈ 1.5 compared
with detection of a signal with a known phase.

To increase the sensitivity at higher frequencies, it is possible to increase
the interrogation time (see the main text) by using a series of 2π-pulse cycles
(CPMG pulse sequence). A single cycle corresponds to the pulse sequence
τ/4 −π− τ/2 −π− τ/4. Although this method increases the sensitivity,
the measurement bandwidth decreases with increasing cycle number nc.
The a.c. magnetometer response to a general signal b(t) can be calculated
from a frequency space analysis: (1/2π)

∫ ∞
−∞ b̃(ω)(

∫ τ/2
0 eiωt dt −∫ τ

τ/2 eiωt dt)
dω= (τ/2π)

∫ ∞
−∞ b̃(ω)W0(ω,τ)eiωτ/2 dω, where b̃(ω) is the Fourier transform
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of the signal field and W0 a windowing function. With a similar calculation, we
obtain the windowing function for an nc-cycle pulse sequence:

Wnc (ω,τ) = 1− sec(τω/4)

τω/2
sin(ncτω/2).

This function has a band centre ≈ 2π/τ and bandwidth (half-width at
half-maximum) ∼4/(ncτ).

We can evaluate the improvement in coherence times for the CPMG
sequence in cases where a detailed understanding of the main source of
decoherence is available. For the single-spin magnetometer, we can approximate
the nuclear spin environment by separating contributions from distant nuclear
spins, undergoing dipolar spin diffusion, and nearby nuclear spins, the evolution
of which is frozen by the electron spin’s dipolar field22,23. We can model the
distant nuclear spins as an exponentially correlated Gaussian fluctuating field
B̃ with a correlation function 〈B̃(t)B̃(t ′)〉 ∼ (h̄/gμBT∗

2 )2 exp(−|t − t ′|/Tc),
where Tc  T∗

2 is the correlation time of the nuclear spins.
Within this model, the random phase accumulated during an echo

sequence (δφ = (gμB/h̄)
∫ τ/2

0 B̃(t) dt −∫ τ

τ/2 B̃(t) dt) is characterized by its
variance, 〈δφ2〉 ≈ τ3/[6Tc(T∗

2 )2] for Tc  T∗
2 ,τ. Applying this model to an

nc-cycle CPMG sequence gives 〈δφ2〉 ∼ (ncτ)3/[24n2
c Tc(T∗

2 )2]. Thus, the
multiple-pulse sequence yields an improvement in the lifetime by (2nc)

2/3

(ref. 32). The improvement is conditional on τ,T∗
2 � Tc and on the total

interrogation time ncτ being less than the relaxation time of the electron spins.
Recent experiments have shown that the relaxation time in ultrapure samples
is 20 ms (ref. 18), suggesting nc ∼> 40 cycles can result in an (2nc)

1/3 ∼> 4
overall improvement in sensitivity. Note that in practice this improvement will
be limited by imperfections in the control pulses. For example, π-pulse errors of
order 1% will limit nc ≈ 25, resulting in the optimal sensitivity shown in Fig. 2.

MEASUREMENT EFFICIENCY
The state of the electronic spin is measured by spin-selective fluorescence. When
illuminated by green light, nitrogen-vacancy centres in the ms = 0 state undergo
a cyclic transition45, with a rate limited by radiative decay (γ ∼ 15 MHz). At the
same time, centres in the ms = ±1 state are rapidly pumped into a dark singlet
state, from which they decay to the ms = 0 state after a time tp ≈ 0.5 μs. To
enable good discrimination of the ms = 0,±1 states, the measurement time tm

should be smaller than the optical pumping time tp.
For a given photon collection efficiency ηm , an average of α0 � (tmγ)ηm

photons are detected from each spin in the ms = 0 state and α1(< α0) photons
are detected from each spin in the ms = ±1 manifold. We can estimate
the combined effects of spin projection noise and photon shot noise for N
measurements as N−1/2/C, recovering the formulae for sensitivity used in
the main text, with 1/C = √

1+2(α0 +α1)/(α0 −α1)2. This includes the
effects of photon shot noise and reduced contrast. For current experiments,
a contrast (α0 −α1)/(α0 +α1) ∼ 0.3 is observed. Efficiencies of ηm ∼ 0.001
are achieved in current experiments15,18 and give C ∼ 0.05. Assuming high
collection efficiency (ηm ∼> 0.05) gives C ∼ 0.3.

EFFECTS OF DIFFERENT NITROGEN-VACANCY-CENTRE ORIENTATIONS
To use an ensemble of nitrogen-vacancy centres as a vector magnetometer, the
signal should originate from only one of the four different crystallographic axes.
Under application of a d.c. transverse magnetic field B⊥ x̂, the other (spectator)
centres (with crystalline axis n̂) have their |±1〉 levels split by gμBB⊥ x̂ · n̂. This
detunes the spectator centres from the microwave field used for preparing and
manipulating the ms = ±1 subspace. For example, to use nitrogen-vacancy
centres along the (1,1,1) crystallographic axis, the ideal choice of x̂ is to align
it with the (1,1, 2̄) axis. We require the microwave Rabi frequency � ≥ 3π/T∗

2

for pulse errors to be smaller than our assumed measurement errors for the
desired (111) axis. This translates to a requirement that gμBB⊥ > 3h̄�

√
3/2

for the other three axes. For T∗
2 = 1 μs, we require B⊥ ≥ 0.3 mT. One intriguing

development of nitrogen-vacancy-centre-based magnetometry would be to
exploit the four crystallographic classes of nitrogen-vacancy centre to provide a
full (three-dimensional) vector magnetometer, by changing the direction of the
biasing transverse field B⊥ in between measurements.

Errors due to inhomogeneities in the nitrogen-vacancy-centre properties
(for example, variations of the g-factor due to crystal strains) or to spatial
inhomogeneities of the magnetic field can typically be neglected. Even for
an average microtesla signal field and a distribution of g-factors or field
inhomogeneity of order 4%, the induced dephasing leads to a broadening of the
signal that is smaller than the effects of T2.

COUPLING TO PARAMAGNETIC IMPURITIES
The coupling of a nitrogen-vacancy electronic spin to other nitrogen-
vacancy centres (Sk) and paramagnetic impurities such as nitrogen
(Ik , gI ≈ g) is given by the magnetic dipolar interaction. To first order
in 1/Δ, the secular dipolar Hamiltonian is given by: Hzz +Hepr, with
Hzz = ∑

jk Sz,jDjk · ẑk Sz,k and Hepr = ∑
jk Sz,jDjk · Ik . The dipole interaction

vector is Djk = (μ0g2μ2
B/4πh̄)([3(r̂jk · ẑ)r̂jk − ẑ]/r3

jk), with the ẑ axis set by the
nitrogen-vacancy crystal axis of the sensing spin centres.

We model the secular component of the dipole coupling between
paramagnetic impurities and nitrogen-vacancy centres as ωjk = Djk · x̂I k

x to
the jth nitrogen-vacancy centre, and with a characteristic correlation time
tc ≈ h̄/

√〈D2〉: 〈ω̂jk(t)ω̂jk(t ′)〉≈ 〈D2〉exp(−|t − t ′|/Tc). We can now calculate
the expected spin-echo signal as a function of 〈D2〉, which scales as the square
of the density of paramagnetic impurities. In this limit, when the correlation
time and the interaction energy are at comparable scales, spin echoes decay
exponentially as exp(−t/Tc). We find Tc ≈ 4/

√
αn2; hence, for paramagnetic

impurity densities of 1019 cm−3, Tc ≈ 1 μs.
At high densities, paramagnetic impurities and spectator nitrogen-vacancy

centres may have sufficiently strong interactions to reduce the correlation time
of the field-aligned component, Ix . Spectator nitrogen-vacancy centres may be
optically pumped to their ms = 0 state, reducing dynamical noise, reducing
the effective temperature of the spectator system. However, spin echoes will
not remove the effects of the paramagnetic impurities with short correlation
times, and they may in fact limit the T2 time and the corresponding bandwidth
of the system. Experiments in systems with high nitrogen concentrations
indicate exponential decay of echoes on a 5–20 μs timescale28,46 due to this
coupling; more generally, the decay scales with the density of impurities.
Although approaches such as CPMG and more complex decoupling may help,
we anticipate that paramagnetic impurity concentrations below 1018 cm−3 will
be necessary to achieve the best predicted sensitivities of this article.

NUMBER OF SPINS DETECTED BY A POINT-LIKE SENSOR
To estimate the number of spins that a localized sensor will detect, we determine
the maximum and root-mean-square magnetic fields from a randomly
distributed set of dipolar spins. We denote the dipolar field at a position r0 from a
spin i as Gb(ri −r0,Ii), with normalization of G= (gμnμ0/4π) = BH(10 nm)3

for protons and b(r,I) = (1/r3)(I−3r(r·I)/r2) being the position dependence
of the dipolar field (BH is the magnitude of magnetic field created by a proton at
a distance of 10 nm). The maximum detectable field occurs for polarized spins
pointing perpendicular (z axis) to the surface (Fig. 4a). By symmetry, this field
is parallel to the polarization, and we find

Bmax =G
〈∑

i

bz (ri , I ẑ)

〉
pos

= −2πGIns,

where we choose coordinates such that the half-plane begins at z = −r0, 〈 〉pos

averages over a homogeneous distribution of spin positions, and we assume a
density ns of dipolar spins, enabling us to replace the sum

∑
i with an integral

ns

∫
z<−r0

d3r. At high temperatures, the fluctuations of the potential values
of the dipolar field reflect the

√
N noise statistics from a set of N spins. The

mean-square of the z-component of the magnetic field is then:

B2
r.m.s. = G2

〈∑
ij

〈
bz (ri ,Ii)bz (rj ,Ij)

〉
cfg

〉
pos

= G2 I(I +1)

3

〈∑
i

1

r6
i

(
1+3

z2
i

r2
i

)〉
pos

= G2 I(I +1)

3
ns
π

2r3
0

,

where the average over spin configurations at high temperature
uses 〈Ii,μ Ij,ν〉cfg = δμνδij(I(I +1)/3). We find in particular that the
statistical fluctuations are consistent with Br.m.s. ∼ BH

√
N , where

N ∼ nsr3
0 . More specifically, the effective number of spins detected

N can be estimated from the relation Br.m.s. = |Bmax|/
√

N . Thus,
N = (|Bmax|/Br.m.s. )

2 = (I2/I(I +1)/3)(8πnsr3
0 ). For I = 1/2, this reduces

to N = 8πnsr3
0 , equivalent in effective detection volume to a half-sphere of

radius 2.29r0.
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In the version of this Article originally published, the x axis of Fig. 2b was labelled incorrectly, and should have appeared as shown below. 
This has now been corrected in the HTML and PDF versions.
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