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Markovian reservoir engineering, in which time evolution of a quantum system is governed by a Lindblad
master equation, is a powerful technique in studies of quantum phases of matter and quantum information. It
can be used to drive a quantum system to a desired (unique) steady state, which can be an exotic phase of
matter difficult to stabilize in nature. It can also be used to drive a system to a unitarily evolving subspace,
which can be used to store, protect, and process quantum information. In this paper, we derive a formula for
the map corresponding to asymptotic (infinite-time) Lindbladian evolution and use it to study several
important features of the unique state and subspace cases. We quantify how subspaces retain information
about initial states and show how to use Lindbladians to simulate any quantum channels. We show that the
quantum information in all subspaces can be successfully manipulated by small Hamiltonian perturbations,
jump operator perturbations, or adiabatic deformations. We provide a Lindblad-induced notion of distance
between adiabatically connected subspaces. We derive a Kubo formula governing linear response of
subspaces to time-dependent Hamiltonian perturbations and determine cases in which this formula reduces
to a Hamiltonian-based Kubo formula. As an application, we show that (for gapped systems) the zero-
frequency Hall conductivity is unaffected bymany types ofMarkovian dissipation. Finally, we show that the
energy scale governing leakage out of the subspaces, resulting from either Hamiltonian or jump-operator
perturbations or corrections to adiabatic evolution, is different from the conventional Lindbladian
dissipative gap and, in certain cases, is equivalent to the excitation gap of a related Hamiltonian.

DOI: 10.1103/PhysRevX.6.041031 Subject Areas: Condensed Matter Physics,
Quantum Information, Statistical Physics

I. MOTIVATION AND OUTLINE

Consider coupling a quantum mechanical system to a
Markovian reservoir which evolves initial states of the
system into multiple nonequilibrium (i.e., nonthermal)
asymptotic states in the limit of infinite time. After tracing
out the degrees of freedom of the reservoir, the time
evolution of the system is governed by a Lindbladian L
[1,2] (see also Refs. [3–6]), and its various asymptotic
states ρ∞ are elements of an asymptotic subspace AsðHÞ—
a subspace of OpðHÞ, the space of operators on the system
Hilbert space H. The asymptotic subspace attracts all initial
states ρin ∈ OpðHÞ, is free from the decoherence effects of
L, and any remaining time evolution within AsðHÞ is
exclusively unitary. If AsðHÞ has no time evolution, all ρ∞
are stationary or steady. This work provides a thorough
investigation into the response and geometrical properties
of the various asymptotic subspaces.

On one hand, AsðHÞ that support quantum information
[7–10] are promising candidates for storing, preserving,
and manipulating such information, particularly when their
states can be engineered to possess favorable features (e.g.,
topological protection [11–13]). They have been subject
to intense experimental investigation in quantum optics
[14,15], liquid-state NMR [16,17], trapped ions [18–23],
and (most recently) circuit QED [24]. With many current
experimental efforts aimed at engineering Markovian envi-
ronments admitting asymptotic subspaces, it is important to
gain a comprehensive understanding of any differences
between the properties of these subspaces and analogous
subspaces of Hamiltonian systems (e.g., subspaces spanned
by degenerate energy eigenstates).
On the other hand, response properties of AsðHÞ, which

do not necessarily support quantum information, can help
model experimental probes into exotic nonequilibrium
phases of matter resulting from engineered Markovian
reservoirs [25–35] (realized in, e.g., optical lattices [36–46]
or microwave cavity arrays [47–49]). Because of, e.g., sym-
metry [50,51] or topology [11], the asymptotic subspace canbe
degenerate yet not support a qubit [e.g., an AsðHÞ spanned by
two projections jψihψ j and jψ 0ihψ 0j]. For these and similar
cases, standard thermodynamical concepts [52–55] may not
apply and steady states may no longer be thermal or even full
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rank. (We remind the reader that the rank of a diagonalizable
matrix is the number of its not necessarily distinct nonzero
eigenvalues.)Our approach is directly tailored to such systems,
i.e., those possessing one ormore nonequilibrium steady states
whose rank is less than the dimension of the system
Hilbert space.
Unlike Hamiltonians, Lindbladians have the capacity to

model decay. As a result, Lindbladians are often used to
describecommonplacenon-Hamiltonianprocesses (e.g., cool-
ing to a ground state). In general Lindbladian-based time
evolution, all parts of an initial state ρin that are outside of
AsðHÞ will decay as ρin evolves toward an asymptotic state
ρ∞ ∈ AsðHÞ. Since AsðHÞ may be multidimensional, the
resulting asymptotic state may depend on ρin. The decay of
partsofρin and thenontrivialdependenceofρ∞ onρin standout
as two distinct features of Lindbladian-based evolution.
Nonetheless, ρ∞ is a collection of states whose behavior is
otherwise familiar fromHamiltonian-based quantummechan-
ics. An asymptotic subspace can thus be thought of as a
Hamiltonian-evolving subspace embedded in a larger
Lindbladian-evolving space. The aim of this paper is to
determine the effects of Lindbladian evolution on the proper-
ties ofρ∞.Namely,weprove a formula for the effect ofL in the
limit of infinite time (Proposition 2 in Sec. III) and apply it
to the following physically motivated questions, noting that
(4)–(6) contain results relevant also to L with a unique
steady state.
(1) What is the dependence of ρ∞ on ρin? Building on

previous results [50], in Sec. III we show that ρ∞
does not depend on any initial coherences between
AsðHÞ and subspaces outside of AsðHÞ and that the
presence of unitary evolution within AsðHÞ can
actually suppress the purity of ρ∞. We provide a
recipe for using infinite-time Lindbladian evolution
to implement arbitrary quantum channels, i.e., com-
pletely positive trace-preserving maps [56]. This
recipe should prove useful in experimental quantum
channel simulation [57] and autonomous or passive
quantum error correction [58].

(2) What is the effect of time-independent Hamiltonian
perturbations on ρ∞ within AsðHÞ? It was recently
shown [59,60] that Hamiltonian perturbations and
perturbations to the jump operators of L generate
unitary evolution within some AsðHÞ to linear order.
In Sec. IV, we prove that such perturbations induce
unitary evolution within all AsðHÞ to linear order,
extending the capabilities of environment-assisted
quantum computation and quantum Zeno dynamics
[61–66].

(3) What is the geometric “phase” acquired by ρ∞ after
cyclic adiabatic deformations of L? In Sec. V, we
extend previous results [67–71] to show that cyclic
Lindbladian-based [72] adiabatic evolution of states in
AsðHÞ is always unitary, extending the capabilities of
holonomic quantum computation [73] via reservoir
engineering.

(4) What is the natural metric governing distances
between various ρ∞? We introduce in Sec. VI a
Lindbladian version of the quantum geometric
tensor (QGT) [74,75], which encodes both the
curvature associated with adiabatic deformations
and a metric associated with distances between
adiabatically connected steady states.

(5) What is the energy scale governing leakage out of
the asymptotic subspace? Extending Ref. [69], in
Secs. IV C and V C we determine the energy scale
governing leakage out of AsðHÞ due to both Ham-
iltonian perturbations and adiabatic evolution. Con-
trary to popular belief, this scale is not always the
dissipative gap ofL (the nonzero eigenvalue with the
smallest real part). We demonstrate this with an
example from coherent state quantum information
processing [61].

(6) What is the linear response of ρ∞ to time-dependent
Hamiltonian perturbations? In. Sec. IV, we derive a
Lindbladian-based Kubo formula for response of ρ∞
and determine when it reduces to the familiar
Hamiltonian-based Kubo formula [76]. As an ap-
plication, we show that the zero-frequency Hall
conductivity [77] remains quantized under various
kinds of Markovian dissipation.

II. STATEMENT OF KEY RESULTS

In this section, we introduce necessary notation, state our
key result, summarize its ramifications in the form of two
properties, the no-leak and clean-leak properties Eqs. (2.9)
and (2.11), and apply it to various types of AsðHÞ. We
conclude with a summary of earlier work and outline the
rest of the paper. Readers unfamiliar with Lindbladian
evolution are welcome to browse Appendix A.

A. Four-corners decomposition

Since decay of states is an unavoidable feature of
Lindbladian evolution, it is important to make a clear
distinction between the decaying and nondecaying parts of
the N-dimensional system Hilbert space H. Let us group all
nondecaying parts of OpðHÞ into the upper left corner [of
the matrix representation of OpðHÞ] and denote them by the
“upper-left” block . Thereby, any completely decaying
parts will be in the complementary  block, and coher-
ences between the two will be in the “off-diagonal” blocks
. We can discuss such a decomposition in the familiar
language of NMR: the  block consists of a degenerate
ground state subspace immune to decay and dephasing, the
 block contains the set of populations decaying with the
well-known rate 1=T1, and the  block is the set of
coherences dephasing with rate 1=T2. More generally, there
can be further dephasing within  without population
decay, so AsðHÞ [gray region in Fig. 1(a)] is in general a
subspace of .
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Let us now define the superoperator projections on the
blocks. Let P be the orthogonal operator projection
(P ¼ P2 ¼ P†) on and only on the nondecaying subspace
of H. This projection is uniquely defined by the following
conditions: for all ρ∞ ∈ AsðHÞ,

ρ∞ ¼ Pρ∞P;

TrfPg ¼ max
ρ∞

frankðρ∞Þg: ð2:1Þ

The first condition makes sure that P projects onto all
nondecaying subspaces, while the second guarantees that P
does not project onto any decaying subspace. Naturally, the
orthogonal projection onto the maximal decaying subspace
of H is Q≡ I − P [with PQ ¼ QP ¼ 0 and QρðtÞQ → 0
as t → ∞].
We define the four-corners projections acting on A ∈

OpðHÞ as follows:

A ≡ PðAÞ≡ PAP;

A ≡ PðAÞ≡ PAQ;

A ≡ PðAÞ≡QAP;

A ≡ PðAÞ≡QAQ: ð2:2Þ

By our convention, taking the conjugate transpose of
the upper-right part places it in the lower-left subspace
(projection acts before adjoint): A†

 ≡ ðAÞ† ¼ ðA†Þ.
The operators P⊞ (with ⊞ ∈ f;;;g) are projec-
tions (P⊞ ¼ P2⊞), which partition the identity I on OpðHÞ,

P þ P þ P þ P ¼ I ; ð2:3Þ

analogous to PþQ ¼ I. They conveniently add, e.g.,

P ≡ P þ P and P ≡ P þ P: ð2:4Þ

The subspace ≡ POpðHÞ consists of all coherences
between PH and QH, and the “diagonal” subspace ≡
POpðHÞ consists of all operators that do not contain any
such coherences.
Nontrivial decaying subspaces  are ubiquitous in

actively researched quantum information schemes (see,
e.g., Refs. [61,62]). For instance, consider a bosonic
Lindbladian whose steady states are the two coherent
states jαi and j−αi (recently realized experimentally [24]
and discussed in more detail in Sec. IV C 1). All states
orthogonal to j�αi constitute the decaying subspace,
and our results apply. We thoroughly discuss how our
work applies to various AsðHÞ in Sec. II C. Here, before
summarizing our key results, we mention two cases
without decaying subspaces for which our work reduces
to known results.
Hamiltonian case.—If L ¼ −i½H; ·� for some

Hamiltonian, any state written in terms of the N eigenstate
projections jEkihEkj of H (HjEki ¼ EkjEki) is a steady
state. Therefore, there is no decaying subspace in
Hamiltonian evolution (P ¼ I).
Unique state case (full rank).—In the case of a

one-dimensional AsðHÞ, P is the projection on the rank
of the unique steady state ρ∞ ≡ ϱ. If the state’s spectral

decomposition is ϱ ¼ Pdϱ−1
k¼0 λkjψkihψkj (with dϱ being

the number of nonzero eigenvalues λk of ϱ), then

P ¼ Pdϱ−1
k¼0 jψkihψkj. If all N eigenvalues are nonzero,

then ϱ is full rank (e.g., in a Gibbs state) and there is no
decaying subspace (P ¼ I).

B. Key results

States undergoing Lindbladian evolution evolve into
asymptotic states for sufficiently long times [78]:

ρin ⟶
t→∞

ρ∞ ≡ e−iH∞tP∞ðρinÞeiH∞t: ð2:5Þ

The nonunitary effect of Lindbladian time evolution is
encapsulated in the asymptotic projection superoperator
P∞ (with P2

∞ ¼ P∞). The extra Hamiltonian H∞ quanti-
fies any further unitary evolution within AsðHÞ, which of
course does not cause any decoherence. For simplicity, we
state our result for the H∞ ¼ 0 case and outline the
nontrivial consequences of H∞ ≠ 0 later. The asymptotic
projection is a trace-preserving quantum process taking a
density matrix ρin ∈ OpðHÞ into an asymptotic density
matrix in ρ∞ ∈ AsðHÞ. We determine the following for-
mula for P∞ (Proposition 2):

P∞ ¼ PΨðP − PLPL−1PÞ; ð2:6Þ

where the minimal projection PΨ further maps  onto
AsðHÞ. The form of PΨ, a projection onto AsðHÞ of L
which do not possess a decaying subspace, depends on the
details of AsðHÞ and is already known [78,79]. Therefore,

FIG. 1. Decompositions of the space of matrices OpðHÞ acting
on a Hilbert space H using the projections fP;Qg defined in
Eq. (2.1) and their corresponding superoperator projections
fP;P;P;Pg defined in Eq. (2.2). Panel (a) depicts the
block diagonal structure of the asymptotic subspace AsðHÞ,
which is located in and spanned by steady-state basis elements
Ψμ. Panel (b) depicts the subspace of OpðHÞ, spanned by
conserved quantities Jμ, that may leave a footprint on states in
AsðHÞ in cases when there are multiple steady states.
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our work extends previous Lindbladian results to cases
when a decaying subspace is present.
The above formula allows us to determine which parts of

ρin are preserved in the large-time limit [question (1); see
Sec. III C]. For example, since the projection P is not
present in the above formula, we can immediately read off
that no coherences between the nondecaying subspace and
its counterpart are preserved. Moreover, the piece P∞P

can be used to simulate an arbitrary quantum channel
(Sec. III D). Finally, the formula describes how states that
are already in AsðHÞ respond to perturbations. We now
apply the formula to show why PΨ is the only part relevant
to answering questions (2)–(4).
We sketch the effect of small perturbations O on a state

ρ∞ already in AsðHÞ. The perturbations of interest are
either Hamiltonian perturbations V ≡ −i½V; ·� (with
Hamiltonian V and small parameter ϵ) or derivatives ∂α ≡∂=∂xα (with parameters xα and adiabatic evolution time T)
of the now parameter-dependent ρ∞ðxαÞ and LðxαÞ:

O ∈
�
ϵV;

1

T
∂α

�
: ð2:7Þ

We show that both of these can be used to induce unitary
operations on AsðHÞ. We show later in the paper that this
analysis holds for jump operator perturbations as well, but
omit discussing those perturbations for now to keep things
simple. The perturbations ∂α determine adiabatic connec-
tion(s) and thus help with defining parallel transport [i.e.,
adiabatic evolution of AsðHÞ]. Within first order for the
case of perturbation theory (ϵ → 0) and approaching the
adiabatic limit for the case of parallel transport (T → ∞),
two relevant perturbative processes after the action of O on
an asymptotic state are subsequent projection onto AsðHÞ
and leakage out of AsðHÞ via the perturbation and L−1:

ρ∞ → P∞Oðρ∞Þ − L−1Oðρ∞Þ: ð2:8Þ

We show below that these two terms occur both in the Kubo
formula and in adiabatic response.
We first observe that O is limited in its effect on ρ∞.

Acting withO once does not connect with becauseO
does not act nontrivially on ρ∞ from both sides simulta-
neously. This no-leak property can be understood if one
observes that Hamiltonian superoperator perturbations V
act nontrivially on ρ∞ only from one side at a time due to
their commutator form. Likewise, derivatives ∂α act non-
trivially on either the “ket” or “bra” parts of all basis
elements used to write ρ∞ due to the product rule.
Therefore, acting with O once only connects  to itself
and nearest-neighbor squares () and does not cause
“transitions” into :

Oðρ∞Þ ¼ POðρ∞Þ; ð2:9Þ

where P ≡ I − P. Moreover, despite two actions of O
connecting  to , Eq. (2.9) still provides some insight
into second-order effects within AsðHÞ (Sec. IV C).
The no-leak property (2.9) is important in determining

the energy scale governing leakage out of AsðHÞ [question
(5); see Secs. IV C and V C]. Let us apply this property to
the second term in Eq. (2.8):

L−1Oðρ∞Þ ¼ L−1POðρ∞Þ ¼ L−1
 Oðρ∞Þ; ð2:10Þ

where L−1⊞ ≡ ðP⊞LP⊞Þ−1 and ⊞ is any block. Note that
the last step in Eq. (2.10) also uses a property of L,
PLP ¼ 0 [see Eq. (3.3)], which can be understood by
remembering that evolution under L draws states to .
Since the restriction to studying L on  in linear response
has previously gone unnoticed, it is conventionally believed
that the leakage energy scale is determined by the dis-
sipative (also, dissipation or damping) gap Δdg—the non-
zero eigenvalue of L with smallest real part. As shown in
Eq. (2.10), that energy scale is actually governed by the
effective dissipative gap Δedg ≥ Δdg—the nonzero eigen-
value of L with smallest real part. In Hamiltonian systems
(L ¼ −i½H; ·�), a special case of the no-leak property states
that the energy denominator in the first-order perturbative
correction to the kth eigenstate of H contains only energy
differences involving the energy Ek of that eigenstate (and
not, e.g., Ek−1 − Ekþ1).
We now project Oðρ∞Þ back to AsðHÞ to examine the

first term in Eq. (2.8). Applying P∞ to Eq. (2.9) and using
P∞P ¼ 0 from Eq. (2.6) removes two more squares:

P∞Oðρ∞Þ ¼ P∞POðρ∞Þ ¼ PΨOPΨðρ∞Þ: ð2:11Þ

The clean-leak property shows that any leakage of the
perturbed ρ∞ into  does not contribute to the first-order
effect of O within AsðHÞ. Essentially, the clean-leak
property (2.11) makes AsðHÞ resistant to the nonunitary
effects of Lindbladian evolution and allows for a closer
analogue between AsðHÞ and subspaces of unitary systems.
The clean-leak property simplifies calculations of both
Hamiltonian perturbations [question (2); see Sec. IV] and
adiabatic or Berry connections [question (3); see Sec. V]. It
can be used to show that PΨ (instead of the full P∞) fully
governs adiabatic evolution, so the Lindbladian generali-
zation of the QGT [question (4); see Sec. VI] is

Qαβ ≡ PΨ∂αPΨ∂βPΨPΨ: ð2:12Þ

The part of the QGT antisymmetric in α, β corresponds to
the adiabatic curvature F αβ (determined from the Berry
connections). The part of the QGT symmetric in α, β
corresponds to a metric Mαβ on the parameter space.
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C. Examples

We now apply the four-corners decomposition and leak
conditions to various types of AsðHÞ and summarize some
of our main results.

1. Unique state case

In this case, AsðHÞ is one-dimensional (with unique
steady state ϱ) and the asymptotic projection preserves only
the trace of the initial state:

P∞ðρinÞ ¼ ϱTrfρing and PΨðρinÞ ¼ ϱTrfPρing: ð2:13Þ
Note that we use ϱ for states which are determined only by
L (meaning they are independent of ρin). Since there is only
one steady state, there is nowhere to move within AsðHÞ.
Indeed, it is easy to show that

P∞OP∞ ¼ TrfOðϱÞgP∞ ¼ 0 ð2:14Þ

for both types of perturbations O (2.7). Thus, the only
novel application of our results to this case is the metric
arising from the QGT,

Mαβ ¼ Trf∂ðαP∂βÞϱg; ð2:15Þ
where AðαBβÞ ¼ AαBβ þ AβBα. This metric is distinct from
the Hilbert-Schmidt metric Trf∂ðαϱ∂βÞϱg for mixed ϱ and
is nonzero only when ϱ is not full rank. For pure steady
states, both metrics reduce to the Fubini-Study metric [74].

2. Decoherence-free subspace (DFS) case

The simplest multidimensional AsðHÞ which stores
quantum information is a decoherence-free subspace
(DFS) [8]. A d2-dimensional DFS block,

 ¼ AsðHÞ; ð2:16Þ
is spanned by matrices fjψkihψ ljgd−1k;l¼0, where fjψkigd−1k¼0 is
a basis for a subspace of the d ≤ N-dimensional system
space. The decaying block  is then spanned by
fjψkihψ ljgN−1

k;l¼d. Evolution of the DFS under L is exclu-
sively unitary,

∂tðjψkihψ ljÞ ¼ Lðjψkihψ ljÞ ¼ −i½H∞; jψkihψ lj�; ð2:17Þ
where H∞ is the asymptotic Hamiltonian and k; l ≤ d − 1.
Since the entire upper-left block is preserved,

PΨðρinÞ ¼ PðρinÞ ¼ PρinP ð2:18Þ

for a DFS. We can thus deduce from Eq. (2.11) that the
effect of Hamiltonian perturbations V within AsðHÞ is
V ¼ PVP—the Hamiltonian projected onto the DFS.
Likewise, if O ¼ ∂α, then the Lindbladian adiabatic con-
nection can be shown to reduce to ∂αP · P, the adiabatic
connection of the DFS. Naturally, the QGT and its

corresponding metric also reduce to that of the DFS states.
In other words, all such results are the same regardless of
whether the states form a DFS of a Lindbladian or a
degenerate subspace of a Hamiltonian.

3. Noiseless subsystem (NS) case

This important case is a combination of the DFS and
unique steady-state cases. In this case, the nondecaying
portion of the system Hilbert space (PH) factors into a
d-dimensional subspace HDFS spanned by DFS states and a
dax-dimensional auxiliary subspace Hax, which is the range
of some unique steady state ϱax [dax ¼ rankðϱaxÞ]. This
combination of a DFS tensored with the auxiliary state ϱax
is called a noiseless subsystem (NS) [9]. For one NS block,
H decomposes as

H ¼ PH ⊕ QH ¼ ðHDFS ⊗ HaxÞ ⊕ QH: ð2:19Þ

ANS block is possible if L respects this decomposition and
does not cause any decoherence within the DFS part. The
DFS basis elements jψkihψ lj from Eq. (2.17) generalize to
jψkihψ lj ⊗ ϱax. For this case, states in  are not perfectly
preserved, but are instead partially traced over the auxiliary
subspace:

PΨðρinÞ ¼ TraxfPρinPg ⊗ ϱax; ð2:20Þ
where P ¼ PDFS ⊗ Pax and PDFS (Pax) is the identity on
HDFS (Hax) and Trax is a trace over Hax.
Note that the auxiliary factor becomes trivial when ϱax is

a pure state (dax ¼ 1), reducing the NS to a DFS. This
means that the NS case is distinct from the DFS case only
when ϱax is mixed (dax ≠ 1). Similarly, if the dimension of
the DFS d2 ¼ d ¼ 1, the NS reduces to the unique steady-
state case. The NS case thus encapsulates both the DFS and
unique state cases.
For this case, the effect of perturbations V on AsðHÞ is

more subtle due to the auxiliary factor, but the induced time
evolution on the DFS is nevertheless still unitary. The
effective DFS Hamiltonian is

W ¼ TraxfϱaxVg: ð2:21Þ
Similarly, if we define generators of motion Gα in the xα

direction in parameter space (i.e., such that ∂αρ∞ ¼
−i½Gα; ρ∞�), then the corresponding holonomy (Berry
phase) after a closed path is the path-ordered integral of
the various DFS adiabatic connections

~ADFS
α ¼ TraxfϱaxðGαÞg: ð2:22Þ

In both cases, the effect of the perturbation on the DFS part
depends on ϱax, meaning that ϱax can be used to modulate
both Hamiltonian-based and holonomic quantum gates.
The QGT for this case is rather complicated due to the ϱax-
assisted adiabatic evolution, but we show that the QGT
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does endow us with a metric on the parameter space for a
NS block.

4. Multiblock case

The noiseless subsystem is the most general form of one
block of asymptotic states of L, and the most general
AsðHÞ is a direct sum of such NS blocks [78,80,81] [see
Fig. 1(a)] with corresponding minimal projection PΨ. This
important result applies to both Lindbladians and more
general quantum channels [79,82–85] (see Ref. [86] for a
technical introduction). Throughout the paper, we explicitly
calculate properties of one NS block fjψkihψ lj ⊗ ϱaxgd−1k;l¼0

and sketch any straightforward generalizations to the
multiblock case.
Both Eqs. (2.21) and (2.22) extend straightforwardly to

the multiblock case, provided that the blocks maintain their
shape during adiabatic evolution. We do not derive a metric
for this case, so taking into account any potential inter-
action of the blocks during adiabatic evolution remains an
open problem.

D. Earlier work

We review efforts related to our work, including studies
of the structure, stability, and control of Lindbladian
steady-state subspaces.
Regarding the formula for P∞ (Proposition 2), we have

mentioned that the piece P∞P has already been deter-
mined in two seminal works, Baumgartner and Narnhofer
[78] andBlume-Kohoutet al. [79] (see alsoTicozzi andViola
[80]). Our four-corners partition of L produces constraints
on the Hamiltonian and jump operators ofL (Proposition 1),
which are already known from Refs. [78,80,87]. There exist
related formulas for the parts of P∞P corresponding to
fixed points of discrete-time quantum channels in Lemma
5.8 of Ref. [79] and Proposition 7 of Ref. [88] and ofMarkov
chains in Theorem 3.3 of Ref. [89]. In addition, previous
results assume no residual unitary evolution within AsðHÞ
(i.e., H∞ ¼ 0).
Regarding question (1), Jakob and Stenholm [90] men-

tioned the importance of conserved quantities in determin-
ing ρ∞ from ρin, but did not generalize to all AsðHÞ. This
generalization was done by two of us [50], showing that ρ∞
does not depend on dynamics at any intermediate times.
Here, we provide an analytical formula for the conserved
quantities for multidimensional AsðHÞ. In contrast, current
applications of the Keldysh formalism to Lindbladians [91]
do not tackle such cases. Regarding channel simulation,
theoretical efforts have focused on minimizing the ancillary
resources required to simulate channels on a system
[92–95]. To our knowledge, previous efforts did not
consider constructing a more general quantum channel
out of less general Markovian ones.
Regarding Hamiltonian control of AsðHÞ [question (2)],

there are two questions: (a) Is the dominant term generating

evolution within AsðHÞ or causing leakage out of it? and
(b) does the term acting within AsðHÞ generate unitary
evolution? Regarding the first question, it has been widely
believed (and often numerically verified, e.g., in Ref. [61])
that the term governing evolution within AsðHÞ, P∞VP∞,
dominates over the term governing leakage out of AsðHÞ
(provided that V is turned on for some finite time). Several
works [59,62,96] have formally justified this claim and
provided the necessary constraints on the time scale of the
perturbation, interpreting AsðHÞ as a quantum Zeno sub-
space [63,64,66] (see also Refs. [97,98]). Regarding the
second question, Zanardi and Campos Venuti [59] recently
proved that if P∞P ¼ 0, then P∞VP∞ generates unitary
evolution for the DFS case. They also showed [60] that
Lindbladian jump operator perturbations induce unitary
evolution on Lindbladians without decaying subspaces. We
generalize both of these results (by showing that P∞P is
always zero) to all AsðHÞ.
Regarding reservoir-engineered holonomic quantum

computation [73] on AsðHÞ [question (3)], we are faced
again with two similar questions: (a) Is there an adiabatic
limit for open systems? and (b) is the holonomy after a
closed adiabatic deformation unitary? Regarding the first
question, the adiabatic theorem has indeed been general-
ized to Lindblad master equations [70,72,99–102] and all
orders of corrections to adiabatic evolution have been
derived (see, e.g., Ref. [72], Theorem 6). This is the
adiabatic limit dominated by steady states of L. Another
adiabatic limit exists which is dominated by eigenstates of
the Hamiltonian part of L [103–105], which we do not
address further here. Regarding question (b), Sarandy and
Lidar [68] were the first to make contact between adiabatic
or Berry connections and Lindbladians. Avron et al.
(Ref. [72], Proposition 3) showed that the corresponding
holonomy is trace preserving and completely positive.
Carollo, Santos, and Vedral [67] showed that the holonomy
is unitary for Lindbladians possessing one DFS block.
Oreshkov and Calsamiglia [69] proposed a theory of
adiabaticity which extended that result to the multiblock
case and arrived at Eq. (2.22). They showed that corrections
to their result were Oð1= ffiffiffiffi

T
p Þ (with T being the traversal

time), as opposed to Oð1=TÞ as in a proper adiabatic limit.
By explicitly calculating the adiabatic connections, we
connect the result of Ref. [69] with the formulation of
Ref. [68], showing that nonadiabatic corrections are
actually Oð1=TÞ. We also extend Ref. [69] to NS cases
where the dimension of the auxiliary subspace (i.e., the
rank of ϱax) can change. Finally, Zanardi and Campos
Venuti (Ref. [60], Proposition 1) showed that first-order
Hamiltonian evolution within AsðHÞ can be thought of as a
holonomy. We develop this connection further by showing
that, for both processes, evolution within AsðHÞ is gen-
erated by the same type of effective Hamiltonian
[Eqs. (2.21) and (2.22)], and leakage out of AsðHÞ is
governed by the same energy scale. We make the same
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connection between ordinary and adiabatic perturbations
to jump operators of L; the latter were first studied in Avron
et al. [70].
Next, we review the QGT, introduced for Hamiltonian

systems in Ref. [74] (the term “QGT” was coined by Berry
[75]). It encodes both a metric for measuring distances
[106] and the adiabatic curvature. The QGT is experimen-
tally probable (e.g., via current noise measurements [107]).
The Berry curvature can be obtained from adiabatic trans-
port in Hamiltonian [108–110] and Lindbladian [70,111]
systems and even ordinary linear response ([112] and
Appxendix C of [113]). Singularities and scaling behavior
of the metric are in correspondence with quantum phase
transitions [114–116]. Conversely, flatness of the metric
and curvature may be used to quantify stability of a given
phase [117–120], a topic of particular interest due to its
applications in engineering exotic topological phases.
Regarding generalization of the QGT [question (4)], to
our knowledge there has been no introduction of a tensor
including both the adiabatic curvature and a metric for
AsðHÞ. However, Refs. [121,122] did apply various
known metrics to study distinguishability within families
of Gaussian fermionic and spin-chain steady states,
respectively.
Regarding leakage out of AsðHÞ [question (5)], the idea

that is not relevant to first-order nonadiabatic corrections
was mentioned in the Supplemental Material of Ref. [69].
We extend that result to ordinary first-order perturbation
theory. Regarding response (6), both ordinary [123–125]
and adiabatic [72,126] time-dependent perturbation theory
for Lindbladians have been developed earlier. In parallel
to this work, Campos Venuti and Zanardi [127] further
developed the Kubo formula for response to Lindladian
perturbations to specific Lindbladians, most of which do
not possess a decaying subspace.
Lastly, regarding Hall conductivity, Avron et al. [70]

used adiabatic perturbation theory to show that the zero-
frequency Hall conductivity is unaffected by a Lindbladian
whose jump operators are the Landau level lowering
(raising) operators b (b†). We confirm their result using
linear response (calculated for all frequencies) and extend it
to jump operators that are powers of b. Still other jump
operators are considered in Refs. [111,124].

E. Structure of the paper

In Sec. III, we prove Eq. (2.6) for P∞ by applying the
four-corners decomposition to L. We also study the
dependence of ρ∞ on ρin and show how P∞ can be used
to generate any quantum channel. The strategy of the rest of
the paper is to apply the four-corners decomposition to
leading-order response formulas from ordinary and adia-
batic perturbation theory. In Sec. IV, we study the Kubo
formula for Lindbladians and state conditions under which
it reduces to a Hamiltonian-based formula. We also prove
that the evolution within AsðHÞ is unitary, study the

effective dissipative gap Δedg, and touch upon second-
order perturbative effects. In a similar fashion, we study the
adiabatic response formula for Lindbladians in Sec. V.
There, we prove that adiabatic evolution within AsðHÞ is
unitary and link Δedg to nonadiabatic corrections. In
Sec. VI, we introduce the Lindbladian QGT and calculate
it for most of the examples discussed above. We discuss
future directions in Sec. VII. Examples and links to the
appendixes are placed throughout the paper when physical
concreteness or extra pedagogy are desired.

III. ASYMPTOTIC PROJECTION

In this section, we apply the four-corners partition to
Lindbladian superoperators and derive a formula for the
asymptotic projection P∞ for nonsteady AsðHÞ (H∞ ≠ 0).
We also show how the presence of H∞ can influence the
dependence of ρ∞ on ρin and demonstrate how one can
embed any quantum channel in P∞.

A. Four-corners partition of Lindbladians

As we introduce in Sec. II, the four-corners projections
Eq. (2.2) partition every operator A ∈ OpðHÞ into four
independent parts. Combining this notation with the
vectorized or double-ket notation for matrices in OpðHÞ
(see Appendix A), we can express any A as a vector whose
components are the respective parts. The following are,
therefore, equivalent,

A ¼
�
A A

A A

�
⟷ jA⟫ ¼

2
664
jA⟫

jA⟫

jA⟫

3
775; ð3:1Þ

and A ¼ A þ A. With A written as a block vector,
superoperators can now be represented as 3-by-3 block
matrices acting on said vector. Note that we use square
brackets for partitioning superoperators and parentheses for
operators in OpðHÞ [as in Fig. 1 and Eq. (3.1)]. We do so as
well with the Lindbladian L. Recall that

LðρÞ¼−i½H;ρ�þ1

2

X
l

κlð2FlρFl†−Fl†Flρ−ρFl†FlÞ;

ð3:2Þ

with Hamiltonian H, jump operators Fl ∈ OpðHÞ, and
positive rates κl. By writing L ¼ ILI using Eqs. (2.3)
and (2.4) (see Appendixes B and C), we find that

L ¼

2
664
L PLP PLP

0 L PLP

0 0 L

3
775; ð3:3Þ
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where L⊞ ≡ P⊞LP⊞. Note that L is a bona fide
Lindbladian governing evolution within, and the minimal
projection PΨ is exactly the asymptotic projection of L.
The reason for the zeros in the first column is the inability of
L to take anything out of (stemming from the definition of
the four-corners projections). This turns out to be sufficient
for PLP to also be zero, leading to the block upper-
triangular form above. These constraints on L translate to
well-known [78,80,87] constraints on the Hamiltonian and
jump operators as follows (see Appendix B).
Proposition 1.—Let fP;Qg be projections on H and

fP;P;P;Pg be their corresponding projections on
OpðHÞ. Then

∀l∶ Fl
 ¼ 0; ð3:4Þ

H ¼ −
i
2

X
l

κlF
l†
Fl

: ð3:5Þ

These constraints on H and Fl
 (due to Hermiticity,

H ¼ H†
) leave only their complements as degrees of

freedom. The four-corners decomposition provides simple
expressions for the surviving matrix elements of Eq. (3.3)
in terms of H, Fl

; these are shown in Appendix C.
DFS case.—Recall that, in this case, AsðHÞ ¼  and

P ¼ P
d−1
k¼0 jψkihψkj is the DFS projection. In the case of a

nonsteady DFS, evolution within  is exclusively unitary
for all times and generated by a Hamiltonian superoperator
H∞ ≡ L. The jump operators in L, Eq. (C1), must then
act trivially:

Fl
 ¼ alP ð3:6Þ

for some complex constants al. This implies that PLP

from Eq. (C5) is zero and the partition Eq. (3.3) becomes

L ¼

2
64
H∞ 0 PLP

0 L PLP

0 0 L

3
75: ð3:7Þ

If we assume that jψki are eigenstates of H∞ (with
H∞ ≡ −i½H∞; ·�) and remember condition Eq. (3.5),
we reduce to well-known conditions guaranteeing
LðjψkihψkjÞ ¼ 0 (Ref. [25], Theorem 1).

B. Nonsteady asymptotic subspaces

Armed with the partition of L from Eq. (3.3), we study
cases where AsðHÞ contains unitarily evolving states
[H∞ ≠ 0 from Eq. (2.5)]. The basis for AsðHÞ consists
of right eigenmatrices of L with pure imaginary eigenval-
ues. By definition, we can expand jρ∞⟫ in such a basis
since all other eigenmatrices will decay to zero under etL

for sufficiently large t. We call such eigenmatrices right
asymptotic eigenmatrices jΨΔμ⟫ with purely imaginary

eigenvalue iΔ (used here as an index) and degeneracy index
μ (that depends on Δ). By definition, jΨΔμ⟫ ∈  and the
eigenvalue equation is

LjΨΔμ⟫ ¼ iΔjΨΔμ⟫: ð3:8Þ
Since L is not always diagonalizable, any degeneracy may
induce a nontrivial Jordan block structure for a given Δ.
However, it can be shown (see, e.g., Ref. [50], Appendix C)
that all Jordan blocks corresponding to asymptotic eigen-
matrices are diagonal. Therefore, there exists a dual set of
left asymptotic eigenmatrices ⟪JΔμj such that

⟪JΔμjL ¼ iΔ⟪JΔμj: ð3:9Þ
The J are either conserved or oscillating indefinitely:

⟪JΔμjρðtÞ⟫ ¼ ⟪JΔμjetLjρin⟫ ¼ eiΔt⟪JΔμjρin⟫ ð3:10Þ

by trivial integration of the equations of motion [Eq. (2.17)].
For Δ ¼ 0, such J are conserved quantities, so a natural
question is whether they always commute with the
Hamiltonian and the jump operators. It turns out that they
do not always commute [50,78], and so various generaliza-
tions of Noether’s theorem have to be considered [70,128].
Using the following analysis, we can say that J’s always
commute with both the Hamiltonian and jump operators
of Lwhen there is no decaying subspace (P ¼ I). If there is
decay, then conserved quantities still commute with jump
operators and theHamiltonian in the non-decaying subspace
(½J; Fl

� ¼ 0; see Appendix B), but no longer have to
commute in general (½J; Fl� ≠ 0).
The left and right eigenmatrices are dual in the sense that

they can be made biorthogonal (while still maintaining the
orthonormality of the right ones):

⟪JΔμjΨΘν⟫ ¼ δΔΘδμν;

⟪ΨΔμjΨΘν⟫ ¼ δΔΘδμν: ð3:11Þ
Outer products of such eigenmatrices can then be used to
express the asymptotic projection

P∞ ¼
X
Δ;μ

jΨΔμ⟫⟪JΔμj: ð3:12Þ

This is indeed a projection (P2
∞ ¼ P∞) due to Eq. (3.11).

Since it was shown that evolution of asymptotic states is
exclusively unitary (Ref. [78], Theorem 2), it must be that
the eigenvalue set fΔg is that of a Hamiltonian super-
operator, which we define to be H∞ ≡ −i½H∞; ·�. In other
words, we use the set fΔg to construct a Hamiltonian
H∞ ∈ POpðHÞ (defined up to a constant energy shift)
such that each Δ is a difference of the energies of H∞ and
jΨΔμ⟫ are eigenmatrices of H∞. (Note that H∞ shares the
same eigenvalues as P∞LP∞, butH∞ ≠ P∞LP∞ because
the latter is not anti-Hermitian.) Because of this, the
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eigenmatrices fΨ; Jg must come in complex conjugate
pairs:Ψ−Δμ ¼ Ψ†

Δμ (which obstructs us from constructing a
Hermitian basis for fΨΔ≠0;μg) and the same for JΔμ. The
explicit form of H∞ depends on the block diagonal
structure of P∞. Combining P∞ with the definition of
H∞ yields

lim
t→∞

etL ¼
X
Δ;μ

eiΔtjΨΔμ⟫⟪JΔμj≡ etH∞P∞: ð3:13Þ

The asymptotic state is then expressible as

jρ∞ðtÞ⟫ ¼ etH∞P∞jρin⟫ ð3:14aÞ

¼
X
Δ;μ

cΔμeiΔtjΨΔμ⟫; ð3:14bÞ

with complex coefficients

cΔμ ≡ ⟪JΔμjρin⟫ ¼ TrfðJΔμÞ†ρing: ð3:15Þ
These coefficients determine the footprint that ρin leaves on
ρ∞. In general, any part of jρin⟫ not in the kernel of P∞
imprints on the asymptotic state since, by definition, that part
overlaps with some JΔμ.
We proceed to determine jJΔμ⟫ by plugging in the

partition of L from Eq. (3.3) into the eigenvalue equa-
tion (3.9). The block upper-triangular structure of L readily
implies that jJΔμ ⟫ are left eigenmatrices of L:

⟪JΔμ jL ¼ iΔ⟪JΔμ j: ð3:16Þ

Writing out the conditions on the remaining components
jJΔμ ⟫ yields an analytic expression for jJΔμ⟫. We state this
formula below, noting that ½L;P� ¼ 0; the proof is
given in Appendix B.
Proposition 2.—The left eigenmatrices of L correspond-

ing to pure imaginary eigenvalues iΔ are

⟪JΔμj ¼ ⟪JΔμ j
�
P − L

P

L − iΔP

�
; ð3:17Þ

where ⟪JΔμ j are left eigenmatrices of L.
Plugging this result into Eq. (3.12) and setting Δ ¼ 0

yields the formula for P∞ from Sec. II for the case when
H∞ ¼ 0. We now go through the relevant special cases,
introducing notation used throughout the rest of the paper.
Unique state case.—Here, AsðHÞ is stationary because

there is only one state ϱ. The corresponding conserved
quantity is the identity I (since etL preserves the trace). In
the double-ket notation, the asymptotic projection
Eq. (2.13) can be written as P∞ ¼ jϱ⟫⟪Ij. Note that P
is the conserved quantity of L.
DFS case.—In this case, all states in  are asymptotic.

Therefore, steady-state basis elements and conserved

quantities of L ¼ H∞ are equal: jJΔμ ⟫ ¼ jΨΔμ⟫.
Splitting the degeneracy index μ into two indices k, l for
convenience, one can express the right asymptotic eigen-
vectors as ΨΔ;kl ¼ jψkihψ lj, where fjψkig is a basis for the
DFS consisting of eigenstates of H∞ with energies fEkg.
The eigenvalue equation for ΨΔ;kl becomes

H∞ðΨΔ;klÞ ¼ −i½H∞;ΨΔ;kl� ¼ iðEl − EkÞΨΔ;kl; ð3:18Þ

where Δ≡ Ek − El is a difference of the energies of H∞.
NS case.—Let us now focus on a stationary AsðHÞ

(H∞ ¼ 0), meaning that all Δ ¼ 0, and we denote the
respective AsðHÞ basis elements and conserved quantities
as jΨμ⟫≡ jΨΔ¼0;μ⟫ and jJμ⟫≡ jJΔ¼0;μ⟫. Since AsðHÞ is
stationary, we can construct a Hermitian matrix basis for
both AsðHÞ and the corresponding conserved quantities
that uses one index and is orthonormal (under the trace).
For the DFS part of the NS, we define the matrix basis
fjΨDFS

μ ⟫gd2−1μ¼0 . Each ΨDFS
μ consists of Hermitian linear

superpositions of the outer products jψkihψ lj and is not
a density matrix. In this new notation, the basis elements for
one NS block are then

jΨμ⟫ ¼ 1

nax

� jΨDFS
μ ⟫ ⊗ jϱax⟫ 0

0 0

�
: ð3:19Þ

We normalize the states using the auxiliary state norm
(purity),

nax ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟪ϱaxjϱax⟫

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trfϱ2axg

q
; ð3:20Þ

to ensure that ⟪ΨμjΨν⟫ ¼ δμν. Since a NS block is a
combination of the unique and DFS cases, the conserved
quantities of  (i.e., of L) are direct products of the DFS
and auxiliary conserved quantities [78,79]. The unique
auxiliary conserved quantity is Pax, the identity on the
auxiliary subspace Hax. Combining this with the result
above and multiplying by nax so that Ψμ and Jμ are
biorthogonal [see Eq. (3.11)], we see that

⟪Jμj ¼ nax

�
⟪ΨDFS

μ j ⊗ ⟪Paxj 0

0 ⟪Jμj

�
: ð3:21Þ

We use the NS block basis of the above form throughout the
paper. The asymptotic projection P∞ is then

P∞ ≡X
μ

jΨμ⟫⟪Jμj ¼ PΨ − PΨLL−1
 ; ð3:22Þ

where the minimal projection is

PΨ ≡X
μ

jΨμ⟫⟪J
μ
j≡ PDFS ⊗ jϱax⟫⟪Paxj ð3:23Þ

and PDFSð·Þ ¼
P

μjΨDFS
μ ⟫⟪ΨDFS

μ j · ⟫ ¼ PDFS · PDFS is the
superoperator projection onto the DFS part. Applying this
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to a state and remembering that P ¼ PDFS ⊗ Pax yields the
NS projection formula (2.20).
Multiblock case.—If there are two NS blocks (charac-

terized by projections PðϰÞ
DFS ⊗ PðϰÞ

ax with ϰ ∈ f1; 2g) and
no decaying subspace, then the conserved quantities

Jϰ;μ ¼ ΨDFS
ϰ;μ ⊗ PðϰÞ

ax do not have presence in the subspace
of coherences between the blocks. Since the most general
AsðHÞ is a direct sum of such NS blocks [78,80,81], we
can shade gray the blocks in which Jμ may not be zero
[Fig. 1(b)], dual to Ψμ [Fig. 1(a)].

C. Dependence of ρ∞ on ρin and H∞

Here, we examine how ρ∞ depends on ρin, showing how
H∞ can suppress purity of ρ∞. The coefficients Eq. (3.15)
determining the dependence of jρ∞⟫ on jρin⟫ can be split
into two parts,

cΔμ ¼ ⟪JΔμ jρin⟫þ ⟪JΔμ jρin⟫; ð3:24Þ

with each part representing the footprint left by Pjρin⟫
and Pjρin⟫, respectively. We can readily see that coher-
ences Pjρin⟫ decay and cannot imprint in jρ∞⟫. The
second term can be expressed using Proposition 2:

⟪JΔμ jρin⟫ ¼ −⟪JΔμ jPLPðL − iΔÞ−1 jρin⟫: ð3:25Þ

Reading from right to left, this part first “scrambles”
Pjρin⟫ via the inverse term, then “transfers” the result
ρ⋆ into  via the channel [Eq. (C7)]

PLPðρ⋆Þ ¼
X
l

κlFl
ρ

⋆Fl†
 ; ð3:26Þ

and, finally, “catches” that result with ⟪JΔμ j. The footprint
thus depends on all three actions. The transfer channel in
Eq. (3.26) is completely positive (Ref. [56], Theorem 8.1).
One can see that this map has to be nonzero for J ≠ 0, i.e.,
for any footprint to be left at all. This is indeed true when
one remembers that all populations in  are transferred
since Lindbladian evolution is trace preserving (see
Appendix C).
Now observe the scrambling term ðL − iΔÞ−1 . SinceΔ is

an energy difference from H∞, this tells us that unitary
evolution in AsðHÞ affects the dependence of jρ∞⟫ on
Pjρin⟫. This effect cannot be removed by transforming
into a rotating frame via etH∞ . In such a frame, jρ∞⟫
becomes a steady state, but the Δ dependence of JΔμ (and
therefore the expression for cΔμ) remains. This is because
the evolution caused by etH∞ is happening in conjunction
with the nonunitary decay of Pjρin⟫, which can be
interpreted as H∞ affecting the “flow” of parts of
Pjρin⟫ into AsðHÞ. One can thus see that the energy
denominator (due toH∞ ≠ 0) may dampen the purity of the
asymptotic state. We highlight this with a specific example.

1. Example: Four-level system

Let H be four dimensional, with the first two levels
fjψ0i; jψ1ig being a DFS and the latter two fjψ⊥

0 i; jψ⊥
1 ig

decaying into the DFS. Let H ¼ 0 and

F ¼
X1
k¼0

jψkihψ⊥
k j þ α

X1
k¼0

ð−1Þkjψ⊥
k ihψ⊥

k j; ð3:27Þ

where the first term F makes sure that everything flows
into the DFS and the last term F dephases the non-DFS
Bloch vector (with α ∈ R). The steady-state basis elements
are Ψkl ¼ jψkihψ lj since F ¼ 0. We can then use
Eq. (3.17): acting on Ψkl with the adjoint of L (see
Appendix A) and then the adjoint of L−1

 [Eq. (C4)] yields
the corresponding conserved quantities

Jkl ¼ jψkihψ lj þ
jψ⊥

k ihψ⊥
l j

1þ 2α2ð1 − δklÞ
: ð3:28Þ

One can see that Jkl ¼ Ψkl, a feature of the DFS case, and
the absence of jψkihψ⊥

l j terms in Jkl, a key result of the
paper. The only nontrivial feature of the steady state is
due to F and the resulting “scrambling term” L−1

 in
Eq. (3.25). Namely, an initial nonzero coherence
hψ⊥

0 jρinjψ⊥
1 i leads necessarily to a mixed steady state

due to coherence suppression of order Oðα−2Þ.
Letting α ¼ 0, a similar effect can be achieved by

adding the Hamiltonian H¼1
2
βðjψ0ihψ0j−jψ1ihψ1jÞ (with

β ∈ R). Now the DFS is nonstationary (withH∞ ¼ H) and
the off-diagonal DFS elements Ψk≠l rotate. Abusing nota-
tion by omitting the corresponding eigenvalue Δ ¼ β, the
left asymptotic eigenvectors become

Jkl ¼ jψkihψ lj þ
jψ⊥

k ihψ⊥
l j

1þ iβð−Þlð1 − δklÞ
: ð3:29Þ

Despite F ¼ 0, the scrambling term still inflicts damage
to the initial state due to H∞ (for nonzero β), but now the
coherence suppression is of order Oðβ−1Þ.

D. Quantum channel simulation

Here, we show how to embed any quantum channel into
P∞. Recall that a quantum channel E taking a state ρ from a
din-dimensional input space Hin to a dout-dimensional
output space Hout acts as

EðρÞ≡X
l

ElρE
†
l; ð3:30Þ

where El are dout-by-din-dimensional matrices andP
lE

†
lEl is the identity on din. We construct a correspond-

ing L such that E ¼ P∞P, with the input space matched
to  and output space to . First, set all rates κl of the
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Lindbladian equal to one rate κeff , which quantifies con-
vergence to AsðHÞ. Let H ¼ 0 and pad El with zeros to
obtain jump operators of dimension din þ dout,

Fl ¼ Fl
 ¼

�
0 El

0 0

�
: ð3:31Þ

This DFS case greatly simplifies the matrix elements of L
in Appendix C. The decay-generating terms reduce to
L ¼ − 1

2
κeffP and L ¼ −κeffP, so one can think of

κeff as the inverse of a relaxation time T1 for . Using the
Kraus form for the transfer term of P∞ from Eq. (3.26) and
simplifying yields

P∞P ¼ −PLL−1
 ¼ 1

κeff
PLP ¼ E: ð3:32Þ

In other words, while not all quantum channels can be
expressed as etL for any finite t, all can be embedded in
some P∞ ¼ limt→∞etL.

IV. LINEAR RESPONSE

In this section, we apply the four-corners decomposition
to the Kubo formula. For both Hamiltonian and jump
operator perturbations, we show that evolution within
AsðHÞ is of Hamiltonian form and that leakage out of
AsðHÞ is governed by the effective dissipative gap.

A. Decomposing the Kubo formula

Let us assume that time evolution is governed by a
Lindbladian L and the initial state ρ∞ is steady; i.e.,
Lðρ∞Þ ¼ 0. The system is then perturbed as

L → Lþ gðtÞδL; ð4:1Þ

where the perturbation superoperator δL is multiplied by a
time-dependent factor gðtÞ. The Lindbladian-based Kubo
formula [123,125,127,129,130] is derived analogously to
the Hamiltonian formula; i.e., it is a leading-order Dyson
expansion of the full evolution. The main difference is that
the derivation is performed in the superoperator formalism.
We study the difference between the perturbed and unper-
turbed expectation values, ⟪δAðtÞ⟫≡ ⟪AjρðtÞ − ρ∞⟫ for
some observable A. We remind the reader that we use
vectorized notation for matrices and the Hilbert-Schmidt
inner product ⟪AjρðtÞ⟫≡ TrfA†ρðtÞg (see Appendix A).
Within first order in g, the Kubo formula is

⟪δAðtÞ⟫ ¼
Z

t

−∞
dτgðτÞ⟪Ajeðt−τÞLδLjρ∞⟫: ð4:2Þ

While this superoperator form looks very different from the
usual time-ordered commutator expression, it offers an
intuitive interpretation if one thinks of the system as

evolving from the right side of the expression to the left.
Reading the integrand from right to left, the steady state is
perturbed by δL at a time τ, then evolved under the
unperturbed Lindbladian L, and finally evaluated using
the observable A at a time t ≥ τ. The integral represents a
sum over different times τ of the perturbation acting on the
steady state. Removing ⟪Aj produces the first-order term in
the Dyson series for jρðtÞ⟫.
We dissect Hamiltonian and jump operator perturbations

of L [Eq. (3.2)], respectively,

H → H þ gðtÞV; ð4:3aÞ

Fl → Fl þ gðtÞfl ð4:3bÞ

[forV, fl ∈ OpðHÞ andV† ¼ V], showing that both generate
unitary evolutionwithin allAsðHÞ and leakage caused by both
does not take states into. We handle the Hamiltonian case
first for simplicity,

δL ¼ −i½V; ·�≡ V; ð4:4Þ

returning to the general case in Sec. IVD.
Hamiltonian case.—As a sanity check, we let L ¼ H ¼

−i½H; ·� and massage Eq. (4.2) into standard form.
For that, let OðtÞ≡ eiHtOe−iHt ¼ e−tHðOÞ and recall that
½H; ρ∞� ¼ 0, since ρ∞ is generically a superposition of
projections on eigenstates of H. We can then commute eiHt

with ρ∞ and cyclically permute under the trace to obtain

⟪δAðtÞ⟫ ¼ 1
i

Z
t

−∞
dτgðτÞTrf½Aðt − τÞ; V�ρ∞g: ð4:5Þ

We now use four-corners projections P⊞ to partition
Eq. (4.2). Because of the no-leak property [Eq. (2.9)],
PVP ¼ 0. Remembering that the Lindbladian is
block upper-triangular in the four-corners partition [see
Eq. (3.3)], it follows that eLt is also block upper-
triangular. We do not make any assumptions on A:
⟪Aj ¼ ½⟪Aj⟪Aj⟪Aj�. Further decomposing the first
term using the asymptotic projection P∞ from Eq. (3.22)
and its complement Q∞ ≡ I − P∞ yields

⟪δAðtÞ⟫ ¼
Z

t

−∞
dτgðτÞ⟪Ajeðt−τÞH∞Wjρ∞⟫ ð4:6aÞ

þ
Z

t

−∞
dτgðτÞ⟪Ajeðt−τÞLQ∞PVjρ∞⟫ ð4:6bÞ

þ
Z

t

−∞
dτgðτÞ⟪Ajeðt−τÞLPVjρ∞⟫: ð4:6cÞ

The terms differ by which parts of V perturb ρ∞ and also
which parts of A “capture” the evolved result. The three
relevant parts ofA correspond to the three labels in Fig. 2. One
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can readily see that A is irrelevant to this order due to
Eq. (2.9). Equation (4.6a) consists of perturbing and evolving
within the asymptotic subspace A, shaded gray in the Fig 2.
The effect of the perturbation within AsðHÞ isW ≡ P∞VP∞
(shown inSec. IV B to be ofHamiltonian form), andH∞ is the
part of the unperturbed L that generates unitary evolution
within AsðHÞ. Equation (4.6a) therefore most closely resem-
bles the traditional Hamiltonian-based Kubo formula. The
remaining two terms quantify leakage out of AsðHÞ and
contain non-Hamiltonian contributions. Equation (4.6b) con-
sists of perturbing into regions B and C in Fig. 2, but then
evolving under PetLP strictly into region B (since
P∞etLQ∞ ¼ 0). Equation (4.6c) consists of perturbing into
regionC andremaining thereafter evolutiondue toPetLP.
This term is eliminated if A ¼ 0, i.e., if the observable is
strictly in .
DFS case.—Recall that in this case  is a DFS

(P∞P ¼ P), and we do not assume it is stationary
(H∞ ≠ 0). From Eq. (3.7), we can see that L cannot take
any coherences in  back into the DFS (PLP ¼ 0).
Therefore, the interference term [Eq. (4.6b)] is eliminated
and the response formula reduces to

⟪δAðtÞ⟫ ¼
Z

t

−∞
dτgðτÞ⟪Ajeðt−τÞH∞Wjρ∞⟫ ð4:7aÞ

þ
Z

t

−∞
dτgðτÞ⟪Ajeðt−τÞLPVjρ∞⟫: ð4:7bÞ

If, furthermore, A ¼ 0, there are no interference terms
coming from outside of the DFS and the Lindbladian linear
response reduces to the purely Hamiltonian-based term
[Eq. (4.7a)]. Such a simplification can also be achieved when
V ¼ 0,which implies that theHamiltonianperturbationdoes
not take ρ∞ out of the DFS to begin with (PVP ¼ 0).
In the next section, we use the no-leak and clean-leak

properties to determine that evolution within AsðHÞ is of
Hamiltonian form and to quantify the leakage scale of the
remaining two terms [Eqs. (4.6b) and (4.6c)]. Before
doing that, however, let us first show how and when the

above decomposition is useful with an important
example.

1. Example: Hall conductivity with dissipation

As an application of the Lindblad Kubo formula, let us
consider a quantum Hall system with Markovian dissipa-
tion. We do not aim to represent physically sensible
environments of electronic systems; such environments
have already been thoroughly studied (see, e.g.,
Ref. [131]). Rather, we aim to describe artificial quantum
Hall systems induced by light-matter interactions and/or
photonic reservoir engineering. Such systems are being
extensively studied both theoretically [38–41] and exper-
imentally [43–45,132].
Consider a two-dimensional system of N particles of

massm, charge e ¼ þ1, position r, and momentum p, in an
area A ¼ L2 and external magnetic field B (with ℏ ¼ 1).
The Hamiltonian is

H ¼ 1

2m

X
i

πiςπ
i
ς þ

1

2

X
i≠j

Uij

¼ ωc

X
i

�
b†i bi þ

1

2

�
þ 1

2

X
i≠j

Uij; ð4:8Þ

where i; j ∈ f1;…; Ng are particle indices and ς, τ ∈
fx; yg index the spatial direction (with repeated indices
summed). Above, we define the kinetic momentum
πi ¼ pi −A (with A the magnetic vector potential,
½πiς; πjτ� ¼ iBϵςτδij, and ϵςτ the antisymmetric Levi-Cività
symbol), the Landau level lowering operators

bj ¼
1ffiffiffiffiffiffi
2B

p ðπjx þ iπjyÞ; ð4:9Þ

a two-electron interaction potential Uij, and the cyclotron
frequency ωc ¼ B=m. For simplicity, we assume

½Uij; bk� ¼ ½Uij; b
†
k� ¼ 0: ð4:10Þ

Let us take the number of electrons N to satisfy ν≡
2πN=BA ¼ p=q ≤ 1 for p; q ∈ Z, and let us assume the
interaction potential Uij is chosen such that there is a gap
above the ground state j0i [133] in the absence of
dissipation. We take for our perturbation the electric
potential corresponding to a uniform electric field,

Vτ ≡ −i½Vτ; ·� with Vτ ≡ −Eτ

X
i

riτ; ð4:11Þ

and we measure the total current in the ς direction. The
frequency-dependent conductivity tensor σ0ςτ for the
Hamiltonian system can be extracted from Eq. (4.2) and
is given by [77]

FIG. 2. Sketch of regions of linear response of the asymptotic
subspace AsðHÞ (gray) to a Hamiltonian perturbation. Each of
three regions A, B, and C corresponds to the respective response
term Eqs. (4.6a), (4.6b), and (4.6c) in the text.
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σ0ςτðωÞ ¼
1

A
lim
ϵ↓0

Z
∞

0

dteiðωþiϵÞt⟪J0ς jetHVτjρ∞⟫ ð4:12aÞ

¼ νωc

2πðω2 − ω2
cÞ
ðiωδςτ − ωcϵςτÞ; ð4:12bÞ

where ρ∞ ¼ j0ih0j is the ground state, the total current

J0ς ¼
1

m

X
i

πiς ð4:13Þ

is obtained from the Hamiltonian-based continuity equation,
andH ¼ −i½H; ·�. We can further extract the quantized zero-
frequency Hall conductivity:

σH ≡ σ0xyðω → 0Þ ¼ ν

2π
: ð4:14Þ

We now examine the fate of the conductivity in the
presence of dissipation. Let us subject the system to
Lindblad evolution [Eq. (A3)] with rates κi ¼ 1 and
single-particle jump operators

Fi ¼
ffiffiffiffiffiffiffi
2γ1

p
bi þ

ffiffiffiffiffiffiffi
2γ2

p
b2i þ � � � : ð4:15Þ

Note that the coefficients γȷ must be independent of particle
index i for identical particles. One has to be careful about
defining the current operator Jς. The current density jςðrÞ
now obeys the Lindbladian-based continuity equation,

∂tnþ ∂ςjς ¼ L‡ðnÞ þ ∂ςjς ¼ 0; ð4:16Þ

where n ¼ P
iδðr − riÞ is the particle density operator (see

Appendix A for a formal definition of ‡). The total current
is then expressed as

Jς ¼
1

L

Z
d2rjςðrÞ: ð4:17Þ

This is the sensible and measurable definition of current in
a dissipative system (Ref. [70], Sec. 5.2) since it represents
the time-rate change of charge density in a region. Taking
the Fourier transform of Eq. (4.16) and expanding to lowest
order in wave vector yields

Jς ¼
X
i

∂triς ¼
X
i

L‡ðriςÞ; ð4:18Þ

and the Kubo formula (4.12a) generalizes to

σςτðωÞ ¼
1

A
lim
ϵ↓0

Z
∞

0

dteiðωþiϵÞt⟪JςjetLVτjρ∞⟫: ð4:19Þ

Unique state case.—We first consider the case when
γ ≡ γ1 ≠ 0, γȷ>1 ¼ 0, so that Fi ∝ bi. The key observation
is that the current operator is given by

Jς ¼ J0ς þ
1

m

X
i

ϵςτ
γ

ωc
πiτ: ð4:20Þ

With this form of the current operator and our choice of Fi
and Uij, Eq. (4.19) can be evaluated for all frequencies:

σςτðωÞ¼
�
δςλþ

γ

ωc
ϵςλ

�
σ0λτð ~ωÞ

¼ νωc

2πð ~ω2−ω2
cÞ
�
iωδςτ−ωc

�
1− i

γ ~ω

ω2
c

�
ϵςτ

�
; ð4:21Þ

with complex frequency ~ω≡ ωþ iγ. Quite surprisingly,
the Hall conductivity at zero frequency is still given by its
quantized value,

σxyðω → 0Þ ¼ σH ¼ ν

2π
; ð4:22Þ

due to an interesting interplay between the Lindbladian
time evolution and the modification to the current operator.
This effect can also be observed when calculating the
quantized Hall conductivity using adiabatic perturbation
theory (Ref. [70], Sec. 7). It is even present when we extend
this case to the case of a low (but nonzero) temperature
thermal bath, up to exponential corrections due to leakage
out of the lowest Landau level (see Appendix D).
Additionally, we see that the usual cyclotron pole at
ω ¼ ωc—guaranteed to be present in the Hamiltonian case
by Kohn’s theorem [134]—is broadened into a Lorentzian
due to the presence of dissipation. This shows that while the
cyclotron resonance is independent of the details of
interactions, it is in fact sensitive to dissipation.
DFS case.—Here, we look at the case when γ1 ¼ 0 and

γȷ>1 ≠ 0. Now the asymptotic subspace consists of all states
in the lowest two Landau levels—a DFS case. Therefore, it
is useful to consider the DFS Kubo formula [Eq. (4.7)]. The
key point now is that the perturbation Vτ leaves ρ∞ in the
steady-state subspace, and, hence, the second term
[Eq. (4.7b)] in the Kubo formula vanishes. Although the
current operators Jς, determined by Eq. (4.18), depend on
the jump operators Fi, the projection ðJςÞ, which appears
in the first term [Eq. (4.7a)], is independent of Fi and
equivalent to the Hamiltonian-based current Eq. (4.13):
ðJςÞ ¼ J0ς . These two observations conspire to ensure that
the conductivity at all frequencies is unaffected by dis-
sipation and is still given by σ0ςτðωÞ from Eq. (4.12b).

B. Evolution within AsðHÞ
Let us now focus on the termW ≡ P∞VP∞ [Eq. (4.6a)]

quantifying the effect of the perturbation within AsðHÞ.
Becayse of a lack of a formula for P∞, it was previously
unclear whether W is capable of causing any decoherence
within AsðHÞ. We now show that it is not. Therefore, the

GEOMETRY AND RESPONSE OF LINDBLADIANS PHYS. REV. X 6, 041031 (2016)

041031-13



first-order effect of the perturbation within AsðHÞ will
always be of Hamiltonian form.
A swift application of the no-leak and clean-leak proper-

ties, Eqs. (2.9) and (2.11), allows us to substitute PΨ ≡
P∞P for P∞. Recall that PVP ¼ 0 and that W is
acting on a steady state ρ∞ ∈ AsðHÞ, yielding

Wjρ∞⟫ ¼ P∞PVP∞jρ∞⟫ ¼ PΨVPΨjρ∞⟫: ð4:23Þ

As seen from the full Kubo formula, this term is of the same
order in the perturbation as the two leakage terms
[Eqs. (4.6b) and (4.6c)]. However, if H∞ ¼ 0 and if the
perturbation is turned on for a finite time T and rescaled by
1=T, it can be shown [59,62,96] thatW is the only leading-
order effect. Therefore, the entire state undergoes quantum
Zeno dynamics according to W (Refs. [63,64,66]; see also
Refs. [97,98]). We show below that such dynamics is
unitary for all AsðHÞ.
DFS case.—We immediately read off the effective

Hamiltonian for the DFS case. Since PΨ ¼ P,

W ¼ −i½V; ·�; ð4:24Þ

with V the perturbation projected onto the DFS.
Applications of this formula to circuit and waveguide
QED quantum computation schemes can, respectively,
be found in Refs. [61,62].
NS case.—In this case, we have to use the formula for

PΨ from Eq. (3.23), restated below:

PΨ ¼ PDFS ⊗ jϱax⟫⟪Paxj; ð4:25Þ

with PDFSð·Þ ¼ PDFS · PDFS being the superoperator pro-
jection on the DFS part, Pax being the operator projection
on the auxiliary part, and P ¼ PDFS ⊗ Pax. Direct multi-
plication yields

W ¼ PΨVPΨ ¼ ⟪PaxjVjϱax⟫ ⊗ jϱax⟫⟪Paxj; ð4:26Þ

where the evolution within the auxiliary part is trivial and
evolution within the DFS part is generated by the effective
DFS Hamiltonian W:

⟪PaxjVjϱax⟫ ¼ −i½TraxfϱaxVg; ·�≡ −i½W; ·�: ð4:27Þ

To better reveal the effect of ϱax, it is worthwhile to express
V as a sum of tensor products of various DFS and
auxiliary Hamiltonians: V ¼ P

ιV
ι ⊗ V ι

ax. The effective
Hamiltonian then becomes

W ¼
X
ι

TraxfϱaxV ι
axgV ι: ð4:28Þ

In words, W is a linear combination of Hamiltonian
perturbations V ι on the DFS, with each perturbation

weighed by the expectation value of the corresponding
auxiliary operator V ι

ax in the state ϱax.

C. Leakage out of AsðHÞ
Now, let us set H∞ ¼ 0 and focus on the two leakage

terms [Eqs. (4.6b) and (4.6c)] from the Kubo formula. For
simplicity, let us slowly ramp up the perturbation gðtÞV to a
constant, so gðtÞ ¼ limη→0eηtΘð−tÞ, with ΘðtÞ the Heaviside
step function. This simplifies the leakage part of the Kubo
formula using the Drazin inverse of L:Z

t

−∞
dτgðτÞeðt−τÞLQ∞ ¼

Z
∞

0

dtetLQ∞ ≡ −L−1: ð4:29Þ

This pseudoinverse (L−1L ¼ LL−1 ¼ Q∞) is also the
inverse of all invertible parts in the Jordan normal form
of L (Ref. [59], Appendix D). Plugging this in and
omitting ⟪Aj, the leakage terms Eqs. (4.6b) and (4.6c)
reduce to

Q∞jρðtÞ⟫ ¼ −L−1Vjρ∞⟫: ð4:30Þ

Now we can apply the clean-leak property Eq. (2.11) to
narrow down those eigenvalues of L that are relevant in
characterizing the scale of the leakage. By definition
Eq. (4.29), L−1 has the same block upper-triangular
structure as L from Eq. (3.3). This fact conspires with
PVP ¼ 0 to allow us to ignore L and write

Q∞jρðtÞ⟫ ¼ −L−1
 Vjρ∞⟫: ð4:31Þ

Therefore, the relevant gap is the nonzero eigenvalue of
L with the smallest absolute value. However, we now
show how the spectrum of L is actually contained in
the spectrum of L þ L. Recalling the block upper-
triangular structure of L from Eq. (3.3), one can establish
that its eigenvalues must consist of eigenvalues of L,
L, and L. However, evolution of the two coherence
blocks is decoupled, L ¼ L þ L (see Appendix C),
and eigenvalues of L come in pairs. Therefore, one can
then define the effective dissipative gap Δedg to be the
nonzero eigenvalue of L þ L with the smallest abso-
lute value.
As a brief aside, we mention that the piece L is also not

relevant in a term P∞VL−1VP∞ [135–137] that acts on
AsðHÞ and is second order in the perturbation. Since
PVP ¼ 0, one can reduce this term to P∞VL−1

 VPΨ.
However, we cannot replace the remaining P∞ with PΨ
since two actions of V can take the state from  to .
DFS case.—Recall that now all of  is stationary

(provided that H∞ ¼ 0). We show that for certain DFS
cases, Δedg is the excitation gap of a related Hamiltonian.
Such DFS cases are those where L [Eq. (A3)] can be
written without a Hamiltonian part,
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LðρÞ ¼ 1

2

X
l

κlð2FlρFl† − Fl†Flρ − ρFl†FlÞ; ð4:32Þ

and where DFS states are annihilated by the jump oper-
ators, Fljψki ¼ 0. This implies that Fl

 ¼ PFlP ¼ 0

(with P ¼ P
d−1
k¼0 jψkihψkj). We now determine Δedg

for such systems. Since there is no evolution in ,
L ¼ 0. Borrowing from Appendix C and using the above
assumptions,

LðρÞ ¼ −
1

2

X
l

κlPρðFl†FlÞ: ð4:33Þ

From this, we can extract the decoherence [138] or parent
[31] Hamiltonian:

Hedg ≡ 1

2

X
l

κlFl†Fl: ð4:34Þ

The (zero-energy) ground states of Hedg are exactly the
DFS states jψki [31,138] and the excitation gap of Hedg

is Δedg.

1. Example: Driven two-photon absorption

As an example of the above DFS simplification, consider
the bosonic Lindbladian [61,71,139,140] with one jump
operator F ¼ a2 − α2 and rate κ ¼ 1, where α ∈ R,
½a; a†� ¼ I and n≡ a†a. For sufficiently large α, this
Lindbladian possesses a DFS spanned by the bosonic
coherent states jαi and j− αi. All states orthogonal to
j� αi constitute the decaying subspace. The decoherence
Hamiltonian is readily calculated to be

Hedg ¼
1

2
½nðn − 1Þ − α2ða2 þ a†2Þ þ α4�: ð4:35Þ

The excitation gap of Hedg (Δedg) is plotted in Fig. 3 versus
α, along with Δdg and the eigenvalue of L with smallest
real part. One can see that for α > 1.5, the dissipative gap of
L is smaller and does not coincide with the energy scale
governing leakage.

D. Jump operator perturbations

Having covered Hamiltonian perturbations, let us return
to jump operator perturbations of the Lindbladian Eq. (3.2).
Recall from Eq. (4.3b) that

F → F þ gðtÞf; ð4:36Þ

with f ∈ OpðHÞ, not necessarily Hermitian. It was first
shown in Ref. [60] that such perturbations actually induce
unitary evolution on NS blocks of those Lindbladians that
do not possess a nontrivial decaying subspace (P ¼ I).
Here, we extend this interesting result to cases where P ≠ I,

thereby covering all L. Namely, just like Hamiltonian
perturbations V, jump operator perturbations induce unitary
evolution within AsðHÞ and the leakage scale associated
with them is still Δedg ≥ Δdg.
Returning to Eq. (4.4), the action of the perturbation to

first order in g is characterized by

δLðρÞ≡ YðρÞ ¼ κ

�
Fρf† þ H:c: −

1

2
ff†F þ F†f; ρg

�
;

ð4:37Þ

with κ being the rate corresponding to the jump operator F
(we ignore the index l for clarity). We hope to invoke the
clean-leak property [Eq. (2.11)] once again, but the first
term on the right-hand side of the above equation acts
simultaneously and nontrivially on both sides of ρ. There is
thus a possibility that one can reach  when acting with Y
on a steady state ρ∞. However, the condition F ¼ 0 from
Proposition 1 implies that PðFρ∞f†Þ is zero for all f, so
one can still substitute PΨ for P∞:

P∞YP∞jρ∞⟫ ¼ PΨYPΨjρ∞⟫: ð4:38Þ

Furthermore, the fact that PYP ¼ 0 allows us to ignore
 in determining the leakage energy scale associated with
these jump operator perturbations. We finish with calculat-
ing the corresponding effective Hamiltonian for the most
general cases.
NS case.—Having eliminated the influence of the

decaying subspace , we can now repeat the calculation
done for Hamiltonian perturbations using the NS projection
Eq. (4.25), yielding

PΨYPΨ ¼ ⟪PaxjYjϱax⟫ ⊗ jϱax⟫⟪Paxj: ð4:39Þ

After some algebra, the DFS part reduces to Hamiltonian
form [60]: ⟪PaxjYjϱax⟫ ¼ −i½Y; ·�, where

Δdg

Δedg

0.5 1.0 1.5 2.0

2

4

6

8

10

FIG. 3. Plot of the effective dissipative gap Δedg, the nonzero
eigenvalue of L with smallest real part, and the dissipative gap
Δdg versus α for the Lindbladian with jump operator
F ¼ a2 − α2. One can see that Δedg ≥ Δdg.
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Y ≡ i
2
κTraxfϱaxðF†

f − f†FÞg: ð4:40Þ

Multiblock case.—We now sketch the calculation of
both Hamiltonian and jump operator perturbations,
δL ¼ V þ Y, for the most general case of  housing
multiple NS blocks. Once again, we can get rid of the
decaying subspace and substitute PΨ for P∞. In addition,
since PΨ does not have any presence except within
the (gray) NS blocks of [(see Fig. 1), PΨ will not project
onto any coherences between the NS blocks. The contrib-
uting part ofP∞δLP∞ thus consists of the Hamiltonian and
jump operator perturbations projected onto each NS block.
Combining the effective Hamiltonians arising from V andY
[respectively, Eqs. (4.27) and (4.40)], the effective evolution
within the DFS part of each NS block (indexed by ϰ) is
generated by the Hamiltonian

XðϰÞ≡TrðϰÞax

�
ϱðϰÞax

�
Vþ i

2
κðF†

f−f†FÞ
��

: ð4:41Þ

In fact, the unprojected Hamiltonian,

X ≡ V þ i
2
κðF†f − f†FÞ; ð4:42Þ

has previously been introduced (Ref. [70], Theorem 5) as the
operator resulting from joint adiabatic variation of the
Hamiltonian and jump operators ofL. It is thus not surprising
that the effect of perturbations to the Hamiltonian and jump
operators on ρ∞ is X projected onto AsðHÞ.

V. ADIABATIC RESPONSE

We now apply the four-corners decomposition to adia-
batic perturbation theory. Here, the leading-order term
governs adiabatic evolution within AsðHÞ while all other
terms are nonadiabatic corrections. We show that for a
cyclic adiabatic deformation of steady AsðHÞ, the holon-
omy is unitary. We also determine that the energy scale
governing nonadiabatic corrections is once again governed
by the effective dissipative gap Δedg.

A. Decomposing the adiabatic formula

First, let us briefly recall the setup of the standard
adiabatic limit for Lindbladians (see Sec. II D for a
reference list). Readers who are unfamiliar are encouraged
to read about the closely related Hamiltonian-based adia-
batic limit in Appendix E 1. Unlike adiabatic evolution of
“non-Hermitian Hamiltonian” systems, Lindbladian adia-
batic evolution always obeys the rules of quantum mechan-
ics (i.e., is completely-positive and trace-preserving).
Throughout this entire section, we assume that AsðHÞ is
steady (H∞ ¼ 0) but note that this analysis can be extended
to non-steady AsðHÞ by carefully including a “dynamical
phase” contribution from H∞. Recall that a system
evolves in a rescaled time s≡ t=T ∈ ½0; 1� according to

a time-dependent Lindbladian LðsÞ, where the end time T
is infinite in the adiabatic limit. For all s, we define a
continuous and differentiable family of instantaneous
asymptotic subspaces with corresponding asymptotic
projections

PðsÞ
∞ ¼

X
μ

jΨðsÞ
μ ⟫⟪JμðsÞj; ð5:1Þ

steady-state basis elements ΨðsÞ
μ [such that LðsÞjΨðsÞ

μ ⟫¼0],
and conserved quantities JμðsÞ [such that⟪JμðsÞjLðsÞ ¼ 0].
The dimension of the instantaneous subspaces (i.e., the
rank of P∞

ðsÞ) is assumed to stay constant during this
evolution. In other words, the zero eigenvalue of LðsÞ is
isolated from all other eigenvalues at all points s by the
dissipative gap Δdg (analogous to the excitation gap in
Hamiltonian systems). We further assume that s ∈ ½0; 1�
parametrizes a path in a space of control parameters M,
whose coordinate basis is fxαg. In other words, we can
parametrize

∂t ¼
1

T
∂s ¼

1

T

X
α

ẋα∂α; ð5:2Þ

where ∂s is the derivative along the path, ∂α ≡ ∂=∂xα are
derivatives in various directions in parameter space, and
ẋα ≡ dxα

ds are (unitless) parameter velocities.
Following Ref. [72], starting with an initially steady state

jρð0Þ⟫ ∈ AsðHÞ, adiabatic perturbation theory is an expan-
sion of the equation of motion

1

T
∂sjρðsÞ⟫ ¼ LðsÞjρðsÞ⟫ ð5:3Þ

in a series in 1=T. Each term in the expansion is further
divided using the decomposition I ¼ P∞ þQ∞ into terms
inside and outside the instantaneous AsðHÞ. This allows
one to derive both the adiabatic limit (when T → ∞) and all
corrections. The Oð1=TÞ expansion for the final state from
Theorem 6 of Ref. [72] reads

jρðsÞ⟫¼Uðs;0Þjρð0Þ⟫þ 1

T
L−1ðsÞṖðsÞ

∞ Uðs;0Þjρð0Þ⟫

þ 1

T

Z
s

0

drUðs;rÞfṖ∞L−1Ṗ∞gðrÞUðr;0Þjρð0Þ⟫; ð5:4Þ

where all quantities in curly brackets are functions of r,
Ṗ∞ ≡ ∂sP∞, Q∞ ≡ I − P∞, and L−1 is the instantaneous
inverse [Eq. (4.29)]. The superoperator

Uðs;s0Þ ¼ P exp

�Z
s

s0
ṖðrÞ

∞ PðrÞ
∞ dr

�
ð5:5Þ

parallel transports states in Pðs0Þ
∞ OpðHÞ to states in

PðsÞ
∞ OpðHÞ and is a path-ordered product of exponentials
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of the adiabatic connection Ṗ∞P∞, the generator of
adiabatic evolution (see Appendix E).
Like the Kubo formula, all terms can be interpreted when

read from right to left. The first term in Eq. (5.4) represents
adiabatic evolution of AsðHÞ, the (second) leakage term
quantifies leakage of jρð0Þ⟫ out of AsðHÞ, and the (last)
tunneling term represents interference coming back into
AsðHÞ from outside. This term is a continuous sum of
adiabatically evolved steady states that are perturbed by
Ṗ∞L−1Ṗ∞ at all points r ∈ ½0; s� during evolution.
Because of its dependence on the spectrum of L, this term
needs to be minimized to determine the optimal adiabatic
path through AsðHÞ [141]. Notice also the similarity
between the leakage term and the leakage term Eq. (4.31)
of the Kubo formula.Motivated by this, we proceed to apply
the four-corners decomposition to all three terms.

B. Evolution within AsðHÞ
Let us now assume a closed path [LðsÞ ¼ Lð0Þ].

However, due to the geometry of the parameter space M,
the state may be changed (e.g., acquire a Berry phase). In
the adiabatic limit [according to Eq. (5.4)], an initial steady
state evolves in closed path C as jρð0Þ⟫ → Ujρð0Þ⟫,
acquiring a holonomy

U ≡ Uð1;0Þ ¼ P exp

�I
C
Ṗ∞P∞ds

�
: ð5:6Þ

The above expression acts on the steady-state basis

elements Ψðs¼0Þ
μ used to express

jρð0Þ⟫ ¼
X
μ

cμjΨð0Þ
μ ⟫; ð5:7Þ

so we deem it the operator representation of the holonomy
U and connection Ṗ∞P∞.
Instead of looking at how the basis elements evolve, let

us instead express the effect of the holonomy on the
coordinates cμ of the state above. This can be done by
generalizing the Hamiltonian analysis of Appendix E to
Lindbladians [68,72], which produces a parallel transport
condition

P∞∂sjρ⟫ ¼ 0 ð5:8Þ

characterizing the Lindbladian adiabatic limit. After
expressing ∂s in terms of the various ∂α’s [Eq. (5.2)], this
condition provides an equation of motion for the coordinate
vector cμ. Solving this equation yields (what we call) the
coordinate representation of the holonomy,

B ¼ P exp

�
−
X
α

I
C
Aαdxα

�
; ð5:9Þ

and corresponding adiabatic connection

Aα;μν ≡ ⟪Jμj∂αΨν⟫: ð5:10Þ

Note thatAα is a real matrix since fJμ;Ψνg are Hermitian.
The connection transforms as a gauge potential under
jΨμ⟫ → jΨν⟫Rνμ and ⟪Jμj → R−1

μν⟪Jνj for any
R ∈ GL½dim AsðHÞ;R�:

Aα → R−1AαRþR−1∂αR: ð5:11Þ

Upon evolution in the closed path, the density matrix
transforms as

jρð0Þ⟫ ¼
Xd2−1
μ¼0

cμjΨð0Þ
μ ⟫ →

Xd2−1
μ;ν¼0

BμνcνjΨð0Þ
μ ⟫; ð5:12Þ

equivalent to the operator representation. We study both
representations below, showing that the holonomy is
unitary for all AsðHÞ.
First, let us remove the decaying subspace from both

representations of the connection by applying the clean-
leak property Eq. (2.11). Simplifying Aα turns out to be
similar to calculating the effective Hamiltonian perturba-
tion W within AsðHÞ in Sec. IV. By Eq. (2.11),

Aα;μν ≡ ⟪Jμj∂αΨν⟫ ¼ ⟪Jμj∂αΨν⟫: ð5:13Þ

For the operator representation, one first applies Eq. (2.11)
to the parallel transport condition Eq. (5.8):

0 ¼ P∞j∂sρ⟫ ¼ PΨj∂sρ⟫: ð5:14Þ

Then, one uses this condition to obtain an equation of
motion for ρ:

j∂sρ⟫ ¼ ðI − PΨÞj∂sρ⟫ ¼ ṖΨPΨjρ⟫: ð5:15Þ

The last equality above can be checked by expressing both
sides in terms of the steady-state basis elements Ψμ and
conserved quantities Jμ. For a closed path, the solution to
this equation of motion is then the same holonomy, but now
with the minimal projection PΨ instead of the asymptotic
projection P∞:

U ¼ P exp

�I
C
ṖΨPΨds

�
: ð5:16Þ

The holonomy U thus does not depend on the piece P∞P

associated with the decaying subspace.
DFS case.—Since PΨ ¼ P, the operator representa-

tion allows us to readily extract the DFS case. The
(unitary) holonomy for a set of states jψki (with
P ¼ P

d−1
k¼0 jψkihψkj) is determined by the adiabatic
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connections of the states themselves, namely, ṖP and its
corresponding superoperator form

ṖPðρÞ ¼ ṖPρPþ PρPṖ: ð5:17Þ

This result is known [67] and is a cornerstone of
reservoir-engineered holonomic quantum computation
(see example below). We study this case in the coordinate
representation in Appendix E 2.
Unique state case.—Now, the only conserved quantity is

the identity J ¼ I, so it is easy to show that

Aα ¼ ⟪Ij∂αϱ⟫ ¼ Trf∂αϱg ¼ 0: ð5:18Þ

The unique steady state can never acquire a Berry phase.
While the Hamiltonian formalism does yield a Berry
phase for a unique ground state, that (overall) phase
disappears when the state is written as a density matrix.
Since the Lindbladian formalism deals with density
matrices, one never encounters an overall phase.
NS case.—For this case, the NS factors into a DFS and

an auxiliary part for each s ∈ ½0; 1�. The DFS part is
mapped into a reference DFS spanned by a (parameter-
independent Hermitian matrix) basis fjΨ̄DFS

μ ⟫gd2−1μ¼0 . [Note

that, in general, jΨ̄DFS
μ ⟫ ≠ jΨDFS

μ ðs ¼ 0Þ⟫ since s para-
metrizes a particular path in M while fjΨ̄DFS

μ ⟫g is fixed.]
We let SðsÞ [with SðρÞ≡ SρS†] be the unitary operator that
simultaneously maps the instantaneous basis elements

jΨðsÞ
μ ⟫ into the reference DFS basis and diagonalizes

ϱðsÞax . Similarly, this SðsÞ will factor the instantaneous
conserved quantities ⟪JμðsÞj into a DFS part and the

identity PðsÞ
ax on the auxiliary space. Therefore, we define

the family of instantaneous minimal projections as

PðsÞ
Ψ ¼ SðsÞðP̄DFS ⊗ jϱðsÞax ⟫⟪P

ðsÞ
ax jÞS‡ðsÞ; ð5:19Þ

where P̄DFSð·Þ ¼
P

d2−1
μ¼0 jΨ̄DFS

μ ⟫⟪Ψ̄DFS
μ j · ⟫ ¼ P̄DFS · P̄DFS

is the superoperator projection onto the xα-independent
DFS reference basis. The generators of motion

Gα ≡ iS†∂αS and Gα ≡ −i½Gα; ·� ð5:20Þ

can mix up the DFS with the auxiliary part, generating
novel dissipation-assisted adiabatic dynamics.

We note that ϱðsÞax (and, therefore, PðsÞ
ax ) can change rank

(dðsÞax ) and purity (nðsÞax ¼
ffiffiffiffiffiffiffiffiffiffiffi
Trϱ2ax

p
), provided that PðsÞ

Ψ
remains differentiable. For example, one can imagine

ϱðsÞax to be a thermal state associated with some
Hamiltonian on Hax whose rank jumps from one to
dax as the temperature is turned up from zero. This

implies that PðsÞ and thus PðsÞ
⊞ can change rank also.

However, such deformations do not change the dimen-
sion d2 of AsðHÞ and thus do not close the dissipative
gap. To account for such deformations in the one NS
block case, the path can be partitioned into segments of
constant rankfPg and the connection calculation below
can be applied to each segment.
Simplifying Eq. (5.13) by invoking the reference basis

structure of fJ;Ψg from Eq. (5.19) yields

Aα ¼ ~ADFS
α þAax

α ¼ −i½ ~ADFS
α ; ·� ⊗ jϱax⟫⟪Paxj þAax

α ;

ð5:21Þ

where the DFS effective Hamiltonian is [69]

~ADFS
α ≡ TraxfðP̄DFS ⊗ ϱðsÞax ÞGαg; ð5:22Þ

and the second term is the nax-dependent constant

Aax
α;μν ¼ −∂α ln n

ðsÞ
ax δμν: ð5:23Þ

The first term clearly leaves the auxiliary part invariant
and generates unitary evolution within the DFS part of
the NS. We can thus see that DFS holonomies can be

influenced by ϱðsÞax . We will see that the second term’s
only role is to preserve the trace for open paths.
Sticking with the convention that ΨðsÞ

0 is traceful and the

traceless ΨðsÞ
μ≠0 carry the DFS Bloch vector, we notice that

Aα transforms as a gauge potential under orthogonal Bloch
vector rotations R ∈ SOðd2 − 1Þ:

jΨμ≠0⟫ → jΨν≠0⟫Rνμ and jJμ≠0 ⟫ → jJν≠0 ⟫Rνμ:

ð5:24Þ

In addition, one can internally rotate ϱax without mixingΨμ

with Ψν≠μ. Under such a transformation Sax,

jΨμ⟫ → SaxjΨμ⟫ ¼ S

				Ψ̄DFS
μ ⊗

RaxϱaxR
†
ax

nax
⟫ ð5:25Þ

for some Rax ∈ UðdaxÞ, and the connection transforms as
an Abelian gauge potential:

Aα;μν → Aα;μν þ ⟪JμjS‡
ax∂αSaxjΨν⟫: ð5:26Þ

Plugging Eq. (5.21) into the Lindblad holonomy
Eq. (5.9), we can see thatAax

α is proportional to the identity
matrix (of the space of coefficients cμ) and thus can be
factored out. Therefore,

B ¼ exp

�X
α

I
C
∂α ln naxdxα

�
BDFS; ð5:27Þ
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where BDFS is the unitary ϱax-enhanced holonomy asso-
ciated with ~ADFS. The first term in the above product for an

open path s ∈ ½0; 1� is simply nð1Þax =n
ð0Þ
ax , providing the

proper rescaling of the coefficients cμ to preserve the trace
of jρð0Þ⟫ [142]. For a closed path, this term vanishes (since
nax is real and positive) and B ¼ BDFS. Thus, the holonomy
after a closed-loop traversal of one NS block is unitary.
Multiblock case.—The generalization to multiple NS

blocks is straightforward: the reference basis now consists
of multiple blocks. Recall that Jμ do not have presence in
the off-diagonal parts neighboring the NS blocks [Fig. 1(b)]
and that the only NS block that ∂αΨμ has presence in is that
of Ψμ. Therefore, each NS block is imparted with its own
unitary holonomy.

1. Adiabatic curvature

The adiabatic connection Aα [Eq. (5.10)] can be used to
define an adiabatic curvature defined on the parameter
space induced by the steady states. For simply connected
parameter spaces M [145], the adiabatic curvature can be
shown to generate the corresponding holonomy. More
precisely, the Ambrose-Singer theorem (Ref. [148],
Theorem 10.4) implies that the holonomy for an infini-

tesimal closed path C with base point xð0Þ
α is the adiabatic

curvature at xð0Þ
α . One can alternatively use a generalization

of Stokes’s theorem to non-Abelian connections [149] to
express the holonomy in terms of a “surface-ordered”
integral of the corresponding adiabatic curvature,
generalizing the Abelian case, Eq. (E19). Letting ∂ ½αAβ� ¼
∂αAβ − ∂βAα, the curvature is

F αβ;μν ≡ ∂ ½αAβ�;μν þ ½Aα;Aβ�μν: ð5:28Þ

NS case.—Using the NS adiabatic connection Eq. (5.21)
and remembering that ∂αAax

β is symmetric in α, β, the
adiabatic curvature for one NS block,

F αβ;μν ¼ ∂ ½α ~ADFS
β�;μν þ ½ ~ADFS

α ; ~ADFS
β �μν; ð5:29Þ

is just the curvature associated with the connection ~ADFS.

2. Example: Driven two-photon absorption

A concrete example of Lindbladian-assisted holonomic
manipulation of AsðHÞ is a generalized version of the
driven two-photon absorption example from Sec. IV C.
One can generalize the jump operator to

F ¼ ða − α0Þða − α1Þ; ð5:30Þ

where α0, α1 are complex. For the well-separated case
(jα0 − α1j ≫ 1), the DFS is spanned by coherent states jα0i
and jα1i. After adiabatically traversing a closed loop in the
parameter space of the two α’s, the DFS acquires a

holonomy. For example, if α0 is fixed and α1 is varied
in a closed loop far away from α0, then jα1i → eiϕjα1i,
where ϕ is twice the area (in phase space) enclosed by the
path. This scheme can be generalized to obtain universal
quantum computation on superpositions of coherent states
of multiple modes [71].

C. Leakage out of AsðHÞ
We now return to the adiabatic response formula (5.4) to

apply the four-corners decomposition to the Oð1=TÞ non-
adiabatic corrections. By Eq. (4.29), L−1 has the same
block upper-triangular structure as L from Eq. (3.3). The
derivative of the asymptotic projection has partition

Ṗ∞ ¼

2
64

ðṖΨÞ PṖ∞P PṖ∞P

PṖΨP 0 PṖ∞P

0 0 0

3
75: ð5:31Þ

One can interpret Ṗ∞ as a perturbation, analogous to V
from Sec. IV, and observe from the above partition that Ṗ∞
does not connect block diagonal spaces: PṖ∞P ¼ 0. In

addition, whenever ṖðrÞ
∞ acts on a parallel transported state

living in PðrÞ
 OpðHÞ, only the first column in the above

partition (Ṗ∞P) is relevant. These observations result in
L−1 → L−1

 and the replacement of two factors of Ṗ∞ with
ṖΨ in Eq. (5.4). (We cannot replace the remaining Ṗ∞
since PṖ∞P contains contributions from ∂sJ

μ
.)

jρðsÞ⟫ ¼ Uðs;0Þjρð0Þ⟫þ 1

T
L−1
 ðsÞṖðsÞ

Ψ Uðs;0Þjρð0Þ⟫

þ 1

T

Z
s

0

drUðs;rÞfṖ∞L−1
 ṖΨgðrÞUðr;0Þjρð0Þ⟫:

ð5:32Þ

Using the results of Sec. IV C, the energy scale governing
the leading-order nonadiabatic corrections is once again the
adiabatic dissipative gap Δedg—the nonzero eigenvalue of
L þ L with the smallest real part. A similar result is
shown for the leakage term in the Supplemental Material of
Ref. [69]. In addition, the tunneling term, which is similar
to the second-order perturbative correction P∞VL−1VP∞
we discuss in Sec. IV C, does not contain contributions
from L.

VI. LINDBLADIAN QUANTUM
GEOMETRIC TENSOR

Here, we introduce the Lindbladian QGT Q
and explicitly calculate it for the unique state and NS
block cases. The antisymmetric part of the QGT is equal
to the curvature F generated by the connection A (see
Sec. V B 1). The symmetric part of the QGT produces a
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generalized metric tensor for Lindbladian steady-state
subspaces. We review the Hamiltonian QGT and cover
in detail the DFS case in Appendix F. Most of the relevant
quantities for the Hamiltonian, degenerate Hamiltonian
or DFS, and NS cases are summarized in Table I. We
introduce other geometric quantities in Appendix G,
including an alternative geometric tensor Qalt whose
curvature is different from the adiabatic curvature from
Sec. V B 1, but whose metric appears in the Lindbladian
adiabatic path length.
In Sec. V, we show, using the operator representation

of the adiabatic connection and the conditions Eqs. (2.9)
and (2.11), that the minimal projection PΨ ¼ P∞P (and
not P∞) generates adiabatic evolution within AsðHÞ.
Following this, we define

Qαβ ≡ PΨ∂αPΨ∂βPΨPΨ ð6:1Þ

to be the associated QGT.WhilePΨ ¼ P
μjΨμ⟫⟪J

μ
j is not

always Hermitian due to Jμ ≠ Ψμ (e.g., in the NS case), we
show that the QGT nevertheless remains a meaningful
geometric quantity. Looking at the matrix elements of
Qαβ and explicitly plugging in the instantaneous PΨ

[Eq. (5.19)] yields the following three forms:

Qαβ;μν ≡ ⟪Jμj∂αPΨ∂βPΨjΨν⟫ ð6:2aÞ

¼ ⟪∂αJ
μ
jðI − PΨÞj∂βΨν⟫ ð6:2bÞ

¼ ∂αAβ;μν þ ðAαAβÞμν − ⟪Jμj∂α∂βΨν⟫; ð6:2cÞ

with Aα the Lindblad adiabatic connection Eq. (5.10). Since
Aα;μν are real andfJμ;Ψνg areHermitian, thematrix elements
are all real. From its second form, one easily deduces that the
QGT transforms as Qαβ → R−1QαβR for any basis trans-
formationR ∈ GL½dim AsðHÞ;R� [seeEq. (5.11)].TheQGT

Qαβ consists of parts symmetric (QðαβÞ) and antisymmetric
(Q½αβ�) in α, β. From the third form, it is evident that its
antisymmetric part is exactly the adiabatic curvatureF αβ from
Eq. (5.28) (cf. Ref. [70], Proposition 13). The rest of this
section is devoted to calculating the symmetric part and its
corresponding metric onM, which is defined as the trace TR
(i.e., trace in superoperator space) of the QGT’s symmetric
part,

Mαβ ≡ TRfPΨ∂ðαPΨ∂βÞPΨg ¼
Xd2−1
μ¼0

QðαβÞ;μμ: ð6:3Þ

Before proving this is a metric for some of the relevant
cases, let us first reveal how such a structure corresponds to
an infinitesimal distance between adiabatically connected
Lindbladian steady states by adapting results from non-
Hermitian Hamiltonian systems [150–152]. The zero
eigenspace of L is diagonalized by right and left
eigenmatrices jΨμ⟫ and ⟪Jμj, respectively. In accordance
with this duality between Ψ and J, we introduce an
associated operator jρ̂∞⟫ [151,152],

jρ∞⟫ ¼
Xd2−1
μ¼0

cμjΨμ⟫ ↔ jρ̂∞⟫≡ Xd2−1
μ¼0

cμjJμ⟫; ð6:4Þ

for every steady-state subspace operator jρ∞⟫. This allows
us to define a modified inner product ⟪bAjB⟫ for matrices A
and B living in the steady-state subspace. Since Ψμ and J

μ


are biorthogonal (⟪JμjΨν⟫ ¼ δμν), this inner product is
surprisingly equivalent to the Hilbert-Schmidt inner prod-
uct ⟪AjB⟫. However, the infinitesimal distance is not the
same:

⟪∂sρ̂∞j∂sρ∞⟫ ≠ ⟪∂sρ∞j∂sρ∞⟫: ð6:5Þ

TABLE I. Summary of quantities defined in Secs. V and VI.

Hamiltonians: Operator notation Hamiltonians: Superoperator notation Lindbladians: One NS block

State basis jψki ¼ DFS states ΨDFS
μ ¼ ðΨDFS

μ Þ† ∈ spanfjψkihψ ljg jΨμ⟫ ¼ jΨDFS
μ ⟫ ⊗ j ϱaxnax

⟫

PDFS ¼ P
d−1
k¼0 jψkihψkj PDFS ¼ P

d2−1
μ¼0 jΨDFS

μ ⟫⟪ΨDFS
μ j P∞ ¼ P

d2−1
μ¼0 jΨμ⟫⟪Jμj

¼ PΨ þ P∞P

Connection ADFS
α;kl ¼ ihψkj∂αψ li ADFS

α;μν ¼ ⟪ΨDFS
μ j∂αΨDFS

ν ⟫ Aα;μν ¼ ⟪Jμj∂αΨν⟫

¼ ~ADFS
α;μν þAax

α;μν

Curvature FDFS
αβ ¼ ∂ ½αADFS

β� − i½ADFS
α ; ADFS

β � FDFS
αβ ¼ ∂ ½αADFS

β� þ ½ADFS
α ;ADFS

β � F αβ ¼ ∂ ½αAβ� þ ½Aα;Aβ�
¼ ∂ ½α ~ADFS

β� þ ½ ~ADFS
α ; ~ADFS

β �
FDFS
αβ;kl ¼ hψkj∂ ½αPDFS∂β�PDFSjψ li FDFS

αβ;μν ¼ ⟪ΨDFS
μ j∂½αPDFS∂β�PDFSjΨDFS

ν ⟫ F αβ;μν ¼ ⟪Jμj∂½αPΨ∂β�PΨjΨν⟫

QGT QDFS
αβ;kl ¼ hψkj∂αPDFS∂βPDFSjψ li QDFS

αβ;μν ¼ ⟪ΨDFS
μ j∂αPDFS∂βPDFSjΨDFS

ν ⟫ Qαβ;μν ¼ ⟪Jμj∂αPΨ∂βPΨjΨν⟫

¼ −i∂αADFS
β;kl − ðADFS

α ADFS
β Þkl ¼ ∂αADFS

β;μν þ ðADFS
α ADFS

β Þμν ¼ ∂αAβ;μν þ ðAαAβÞμν
−hψkj∂α∂βψ li −⟪ΨDFS

μ j∂α∂βΨDFS
ν ⟫ −hJμj∂α∂βΨνi

Metric MDFS
αβ ¼TrfPDFS∂ðαPDFS∂βÞPDFSg MDFS

αβ ¼ TRfPDFS∂ðαPDFS∂βÞPDFSg Mαβ ¼ TRfPΨ∂ðαPΨ∂βÞPΨg

ALBERT, BRADLYN, FRAAS, and JIANG PHYS. REV. X 6, 041031 (2016)

041031-20



The symmetric part QðαβÞ shows up in precisely this
modified infinitesimal distance. Using Eq. (6.4), the paral-
lel transport condition Eq. (5.8), and parametrizing ∂s in
terms of the ∂α’s [Eq. (5.2)] yields

⟪∂sρ̂∞j∂sρ∞⟫ ¼ 1
2

X
α;β

Xd2−1
μ;ν¼0

QðαβÞ;μνẋαẋβcμcν; ð6:6Þ

as evidenced by the second form Eq. (6.2b) of the Lindblad
QGT. Tracing the symmetric part over the steady-state
subspace gives the metric Mαβ.
Unique state case.—Here, things simplify significantly,

yet the obtained metric turns out to be novel nonetheless.
The asymptotic projection is PΨ ¼ jϱ⟫⟪Pj and a straight-
forward calculation using Eq. (6.2b) yields

Mαβ ¼ ⟪∂ðαPj∂βÞϱ⟫: ð6:7Þ

Using the eigendecomposition ϱ ¼ Pdϱ−1
k¼0 λkjψkihψkj,

Mαβ ¼ 2
Xdϱ−1
k¼0

λkh∂ðαψkjQj∂βÞψki; ð6:8Þ

whereQ ¼ I − P and h∂ðαψkjQj∂βÞψki is the Fubini-Study
metric corresponding to the eigenstate jψki. In words,Mαβ

is the sum of the eigenstate Fubini-Study metrics weighed
by their respective eigenvalues or populations. If ϱ is pure,
then it is clear thatMαβ reduces to the Fubini-Study metric.
Finally, if ϱ is full rank, then P ¼ I and Mαβ ¼ 0. This
means that the metric is nonzero only for those ϱ that are
not full rank.
NS case.—Recall from Eq. (5.19) that adiabatic evolu-

tion on the NS is parametrized by the instantaneous
minimal projections

PðsÞ
Ψ ¼ SðsÞðP̄DFS ⊗ jϱðsÞax ⟫⟪P

ðsÞ
ax jÞS‡ðsÞ; ð6:9Þ

where P̄DFSð·Þ ¼
P

d2−1
μ¼0 jΨ̄DFS

μ ⟫⟪Ψ̄DFS
μ j · ⟫ ¼ P̄DFS · P̄DFS

is the superoperator projection onto the xα-independent
DFS reference basis. We remind the reader (see Sec. V B)
that the only assumption of such a parametrization is that

the state jρðsÞ∞ ⟫ is unitarily equivalent (via unitary S) to a
tensor product of a DFS state and auxiliary part for all
points s ∈ ½0; 1� in the path.
We can simplifyMαβ and show that it is indeed a metric.

In the reference basis decomposition of PΨ from Eq. (6.9),
the operators Gα ≡ iS†∂αS [with SðsÞjρ⟫≡ jSρS†⟫]
generate motion in parameter space. After significant
simplification, one can express Mαβ in terms of these
generators:

Mαβ ¼ Mð1Þ
αβ þMð2Þ

αβ ;

Mð1Þ
αβ ¼ 2d⟪P̄DFS ⊗ ϱaxjGðαðI − P̄DFS ⊗ PaxÞGβÞ⟫;

Mð2Þ
αβ ¼ 2d⟪GðαjP̄⋆

DFS ⊗ OaxjGβÞ⟫; ð6:10Þ

with projection P̄⋆
DFS consisting of only traceless DFS

generators (we set Ψ̄DFS
0 ¼ 1ffiffi

d
p P̄DFS),

P̄⋆
DFS ≡

Xd2−1
μ¼1

jΨ̄DFS
μ ⟫⟪Ψ̄DFS

μ j ¼ P̄DFS − jΨ̄DFS
0 ⟫⟪Ψ̄DFS

0 j;

ð6:11Þ
and auxiliary superoperator defined (for all auxiliary
operators A) as OaxðAÞ≡ ðA − ⟪ϱaxjA⟫Þϱax.
The quantity Mαβ is clearly real and symmetric in α, β,

so to show that it is a (semi)metric, we need to prove
positivity [wαMαβwβ ≥ 0, with sum over α, β implied,
for all vectors w in the tangent space TMðxÞ at a
point x ∈ M [148]]. Since ϱax is positive definite, one
can show that

wαM
ð1Þ
αβwβ ¼ 4d⟪OjO⟫ ≥ 0; ð6:12Þ

with O ¼ ðI − P̄DFS ⊗ PaxÞðGαwαÞðP̄DFS ⊗ ffiffiffiffiffiffi
ϱax

p Þ. For

the second term Mð2Þ
αβ , we can see that P̄⋆

DFS is positive
semidefinite since it is a projection. We show that Oax is
positive semidefinite by utilizing yet another inner prod-
uct associated with open systems [52]. First, note that

⟪AjOaxjA⟫ ¼ TrfϱaxA†Ag − jTrfϱaxAgj2: ð6:13Þ

Since ϱax is full rank, ⟪AjB⟫ϱax ≡ TrfϱaxA†Bg is a valid
inner product [52] and ⟪AjOaxjA⟫ ≥ 0 is merely a state-
ment of the Cauchy-Schwarz inequality associated with
this inner product. For Hermitian A, Eq. (6.13) reduces to
the variance of ⟪Ajϱax⟫.
Roughly speaking, the first term Mð1Þ

αβ describes how
much the DFS and auxiliary parts mix and the second term

Mð2Þ
αβ describes how much they leave the  block while

moving in parameter space. For the DFS case, Mð2Þ
αβ ¼ 0

(due to Oax ¼ 0 for that case) and the metric reduces to the
standard DFS metric covered in Appendix F. For the unique

state case, Mð2Þ
αβ is also zero (due to P̄⋆

DFS not containing
any traceful DFS elements and thus reducing to zero when

P̄DFS ¼ 1). The mixing term Mð2Þ
αβ is thus nonzero only in

the NS block case.

VII. OUTLOOK

This work examines the properties of asymptotic (e.g.,
steady-state) subspaces of Lindbladians, comparing them
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to analogous subspaces of Hamiltonian systems. We
characterize such subspaces as “not very different” from
their Hamiltonian cousins in terms of their geometrical and
response properties. A quantitative description of our
results is found in Sec. II.
While we focus on response to Hamiltonian perturba-

tions within first order and evolution within the adiabatic
limit, it would be interesting to apply our results further to
Lindbladian perturbations [127], second-order perturbative
effects [137,153], and corrections to adiabatic evolution.
While several elements of this study consider asymptotic
subspaces consisting of only one block of steady states, it is
not unreasonable to imagine that the aforementioned
second-order and/or nonadiabatic effects could produce
transfer of information between two or more blocks.
Similar to the first-order case, we anticipate that jump
operator perturbations may provide alternative ways to
generate second-order effects [137,153], which are cur-
rently only producible with Hamiltonian perturbations.
Recently developed diagrammatic series aimed at deter-
mining perturbed steady states [154] (see also Ref. [155])
may benefit from the four-corners decomposition (when-
ever the unperturbed steady state is not full rank).
It has recently been postulated [156] that Lindbladian

metastable states also possess the same structure as the
steady states. This may mean that our results regarding
conserved quantities (which are dual to the steady states)
also apply to the pseudoconserved quantities (dual to the
metastable states).
We obtain a Lindblad generalization of the quantum

geometric tensor for Hamiltonian systems [74]. The
Lindblad QGT encodes both the adiabatic curvature of
the steady-state subspace and also a novel metric which
generalizes the Fubini-Study metric for Hamiltonians. This
metric will be examined in future work, particularly to see
whether it reveals information about bounds on conver-
gence rates [157–160]. It remains to be seen whether the
scaling behavior of the metric is correlated with phase
stability [117–120] and phase transitions [114–116] for
Lindbladian phases with nonequilibrium steady states. It
would also be of interest to see whether the adiabatic
curvature is related to the Uhlmann phase [161] and various
mixed state Chern numbers [162–164].
We show that the dissipative gap of Lindbladians is not

always relevant in linear response and in corrections to
adiabatic evolution. In fact, another scale, the effective
dissipative gap, is the relevant energy scale for those
processes. It would be of interest to determine how the
effective gap scales with system size in physically relevant
dissipative systems [31,135,136,165].
At this point, the only way to find the projection P onto

the range of the steady states of a Lindbladian L is to
diagonalize L [79]. It could be of interest to determine
whether diagonalization of L is necessary for determining
P. Interestingly, there exists an algorithm [166] (see also

[167]) to verify whether a given projection is equal to P that
does not rely on diagonalization.
Lastly, the properties of Lindbladian eigenmatrices can

be extended to eigenmatrices of more general quantum
channels [79,83–85]. Statements similar to Proposition 2
exist for fixed points of quantum channels [79,88], and
their extension to rotating points will be a subject of future
work. These results may also be useful in determining
properties of asymptotic algebras of observables [168,169]
and properties of quantum jump trajectories when the
Lindbladian is “unraveled” [170,171].
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APPENDIX A: LINDBLADIANS AND
DOUBLE-KET NOTATION

1. Introduction to Lindbladians

Lindbladians operate on the space of (linear) operators
on H, or OpðHÞ≡ H ⊗ H⋆ [172,173] (also known as
Liouville space [129], von Neumann space, or Hilbert-
Schmidt space [174]). This space is also a Hilbert space
when endowed with the Hilbert-Schmidt inner product and
Frobenius norm (for N ≡ dim H < ∞). An operator A in
quantum mechanics is thus both in the space of operators
acting on ordinary states and in the space of vectors acted
on by superoperators. We denote the two respective cases
as Ajψi andOjA⟫ (for jψi ∈ H and for a superoperatorO).
While (strictly speaking) jA⟫ is an N2-by-1 vector and A is
an N-by-N matrix, they are isomorphic, and so we define
OjA⟫, OðAÞ, and jOðAÞ⟫ by their context.
For A, B ∈ OpðHÞ, the Hilbert-Schmidt inner product

and Frobenius norm are, respectively,

⟪AjB⟫≡ TrfA†Bg and ∥A∥≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟪AjA⟫

p
: ðA1Þ

The inner product allows one to define an adjoint operation
‡ that complements the adjoint operation † on matrices in
OpðHÞ:

⟪AjOðBÞ⟫ ¼ ⟪AjOjB⟫ ¼ ⟪O‡ðAÞjB⟫: ðA2Þ
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Writing O as an N2-by-N2 matrix (see Ref. [50],
Appendix A, for the explicit form),O‡ is just the conjugate
transpose of that matrix. For example, ifOð·Þ ¼ A · B, then
one can use Eq. (A1) to verify thatO‡ð·Þ ¼ A† · B†. Similar
to the Hamiltonian description of quantum mechanics,O is
Hermitian ifO‡ ¼ O. For example, all projectionsP⊞ from
Eq. (2.2) are Hermitian.
A Lindbladian acts on a density matrix ρ as

LðρÞ ¼−i½H;ρ� þ 1

2

X
l

κlð2FlρFl†−Fl†Flρ− ρFl†FlÞ;

ðA3Þ

with Hamiltonian H, jump operators Fl ∈ OpðHÞ, and real
nonzero rates κl. References [170,175,176] describe the
conditions on a system and reservoir for which Lindbladian
evolution captures the dynamics of the system. The form of
the Lindbladian Eq. (A3) is not unique due to the following
“gauge” transformation (for complex gl),

H → H −
i
2

X
l

κlðg⋆lFl − glFl†Þ;

Fl → Fl þ glI; ðA4Þ

that allows parts of the Hamiltonian to be included in the
jump operators (and vice versa) while keeping L invariant.
Note that there exists a unique “gauge” in which Fl are
traceless (Ref. [2], Theorem 2.2). It is easy to determine
how an observable A ∈ OpðHÞ evolves (in the Heisenberg
picture) using the definition of the adjoint Eq. (A2) and
cyclic permutations under the trace:

L‡ðAÞ¼−HðAÞþ1

2

X
l

κlð2Fl†AFl−fFl†Fl;AgÞ: ðA5Þ

The superoperator Hð·Þ≡ −i½H; ·� corresponding to the
Hamiltonian is therefore anti-Hermitian because we have
absorbed the “i” in its definition.
Time evolution of states is determined by the equation

j∂tρðtÞ⟫ ¼ LjρðtÞ⟫, so for t ≥ 0,

jρðtÞ⟫ ¼ etLjρin⟫; ðA6Þ

with ρin being the initial state. The norm of a wave function
corresponds to the trace of ρ (⟪Ijρ⟫); it is preserved under
both Hamiltonian and Lindbladian evolution. It is easy to
check that the exponential of any superoperator of the
above form preserves both trace [⟪IjLjρ⟫ ¼ 0 with I the
identity of OpðHÞ] and Hermiticity [LðA†Þ ¼ ½LðAÞ�†, as
can be verified from Eq. (A3)]. However, the norm or purity
of ρ (⟪ρjρ⟫ ¼ Trfρ2g) is not always preserved under
Lindbladian evolution.

2. Double-bra-ket basis for steady states

We now bring in intuition from Hamiltonian-based
quantum mechanics by writing the eigenmatrices as
vectors using double-ket notation. First, we introduce
some bases for OpðHÞ, with which we can build bases
for AsðHÞ. Given any orthonormal basis fjϕkigN−1

k¼0 for the
system Hilbert space H, one can construct the correspond-
ing orthonormal (under the trace) outer product basis for
OpðHÞ,

fjΦkl⟫gN−1
k;l¼0; where Φkl ≡ jϕkihϕlj: ðA7Þ

The analogy with quantum mechanics is that the matrices
Φkl ↔ jΦkl⟫ and Φ†

kl ↔ ⟪Φklj are vectors in the vector
space OpðHÞ and superoperators O are linear operators on
those vectors. Furthermore, one can save an index and use
properly normalized Hermitian matrices Γ†

κ ¼ Γκ to form
an orthonormal basis fjΓκ⟫gN2−1

κ¼0 :

⟪ΓκjΓλ⟫≡ TrfΓ†
κΓλg ¼ TrfΓκΓλg ¼ δκλ: ðA8Þ

For example, an orthonormal Hermitian matrix basis for
OpðHÞ with H two dimensional consists of the identity
matrix and the three Pauli matrices, all normalized
by 1=

ffiffiffi
2

p
.

It is easy to see that the coefficients in the expansion of
any Hermitian operator in such a matrix basis are real. For
example, the coefficients cκ in the expansion of a density
matrix,

jρ⟫ ¼
XN2−1

κ¼0

cκjΓκ⟫ with cκ ¼ ⟪Γκjρ⟫; ðA9Þ

are clearly real and represent the components of a gener-
alized Bloch (coherence) vector [177,178]. Furthermore,
defining

Oκλ ≡ ⟪ΓκjOjΓλ⟫≡ TrfΓ†
κOðΓλÞg ðA10Þ

for any superoperator O, one can write

O ¼
XN2−1

κ;λ¼0

OκλjΓκ⟫⟪Γλj: ðA11Þ

There are many physical O for which the “matrix”
elements Oκλ are real. For example, it is easy to show
that matrix elements Hκλ, where Hð·Þ≡ −i½H; ·�, are real
using cyclic permutations under the trace and Hermiticity
of the Γ’s:

H⋆
κλ ¼ iTrfΓλ½H;Γκ�g ¼ −iTrfΓκ½H;Γλ�g ¼ Hκλ: ðA12Þ
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This calculation easily extends to all Hermiticity-preserv-
ing O, i.e., superoperators such that OðA†Þ ¼ ½OðAÞ�† for
all operators A.
Given a Lindbladian, one can provide necessary and

sufficient conditions under which it generates Hamiltonian
time evolution. This early key result in open quantum
systems [5] can be used to determine whether a perturbation
generates unitary evolution (Proposition 3). We now
proceed to state and prove it as well as the other two
propositions in the main text.

APPENDIX B: PROOFS OF PROPOSITIONS
1, 2, AND 3

Proposition 1.—Let fP;Qg be projections on H and
fP;P;P;Pg be their corresponding projections on
OpðHÞ. Then,

∀l∶Fl
 ¼ 0;

H ¼ −
i
2

X
l

κlF
l†
Fl

:

Proof.—By definition Eq. (2.1), POpðHÞ is the small-
est subspace of OpðHÞ containing all asymptotic states.
Therefore, all states evolving under L converge to states in
POpðHÞ as t → ∞ (Ref. [78], Theorem 2-1). This implies
invariance, i.e., states ρ ¼ PðρÞ remain there under
application of L:

LðρÞ ¼ LPðρÞ ¼ PLPðρÞ: ðB1Þ

Applying P, we get

PLPðρÞ ¼
X
l

κlFl
ρF

l†
 ¼ 0;

since the projections are mutually orthogonal. Taking the
trace,

⟪IjPLPjρ⟫ ¼
X
l

κlTrfρFl†
Fl

g ¼ 0:

If ρ is a full-rank density matrix (rankfρg ¼ TrfPg), then
each summand above is non-negative (since κl > 0 and
Fl†
Fl

 are positive semidefinite). Thus, the only way for

the above to hold for all ρ is for Fl†
Fl

 ¼ 0 for all l, which
implies that Fl

 ¼ 0. Applying P to Eq. (B1) and
simplifying using Fl

 ¼ 0 gives

PLPðρÞ ¼ Pρ

�
iH −

1

2

X
l

κlF
l†
Fl



�
¼ 0;

implying the condition on H. ■

Proposition 2.—The left eigenmatrices of L correspond-
ing to pure imaginary eigenvalues iΔ are

⟪JΔμj ¼ ⟪JΔμ j
�
P − L

P

L − iΔP

�
; ðB2Þ

where ⟪JΔμ j are left eigenmatrices of L.
Proof.—For a left eigenmatrix ⟪JΔμjwith eigenvalue iΔ,

L‡jJΔμ⟫ ¼ −iΔjJΔμ⟫:

Now partition this eigenvalue equation using the projec-
tions fP;P;Pg. Taking the ‡ of the partitioned L
from Eq. (3.3) results in

L‡jJΔμ⟫ ¼

2
6664

L‡
 0 0

PL‡P L‡
 0

PL‡P PL‡P L‡


3
7775
2
6664
jJΔμ ⟫

jJΔμ ⟫

jJΔμ ⟫

3
7775:

The eigenvalue equation is then equivalent to the following
three conditions on the components of JΔμ:

−iΔJΔμ ¼ L‡
ðJΔμ Þ; ðB3aÞ

−iΔJΔμ ¼ PL‡PðJΔμ Þ þ L‡
ðJΔμ Þ; ðB3bÞ

−iΔJΔμ ¼ PL‡PðJΔμ Þ þ L‡
ðJΔμ Þ

þ PL‡PðJΔμ Þ: ðB3cÞ

We now examine them in order.
(i) Condition Eq. (B3a) implies that ½Fl†

 ; JΔμ � ¼ 0 for
all l. [This part is essentially the Lindblad version of
a similar statement for quantum channels (Ref. [79],
Lemma 5.2). Another way to prove this is to apply
“well-known” algebra decomposition theorems (see,
e.g., Ref. [9], Theorem 5)]. To show this, we use the
dissipation function J associated with L [1]. For
some A ∈ POpðHÞ,

J ðAÞ≡ L‡
ðA†AÞ − L‡

ðA†ÞA − A†L‡
ðAÞ

¼
X
l

κl½Fl
; A�†½Fl

; A�:

Using Eq. (B3a) and remembering that JΔμ† ¼ J−Δμ ,

the two expressions for J ðJΔμ Þ imply that

L‡
ðJΔμ† JΔμ Þ ¼

X
l

κl½Fl
; J

Δμ
 �†½Fl

; J
Δμ
 �: ðB4Þ

We now take the trace using the full-rank steady-
state density matrix:
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jρss⟫ ¼ Pjρss⟫≡X
μ

cμjΨ0μ⟫:

Such an asymptotic state is simply jρ∞⟫ from
Eq. (3.14b) with cΔμ ¼ δΔ0cμ and cμ ≠ 0. It is full
rank because it is a linear superposition of projec-
tions on eigenstates of H∞, and such projections
provide a basis for all diagonal matrices of
POpðHÞ. Taking the trace of the left-hand side
of Eq. (B4) yields

⟪ρssjL‡
ðJΔμ† JΔμ Þ⟫ ¼ ⟪LðρssÞjJΔμ† JΔμ ⟫ ¼ 0;

implying that the trace of the right-hand side is zero:X
l

κlTrfρss½Fl
; J

Δμ
 �†½Fl

; J
Δμ
 �g ¼ 0:

Each summand above is non-negative (since κl > 0,
the commutator products are positive semidefinite,
and ρss is positive definite). Thus, the only way for
the above to hold is for ½Fl

; J
Δμ
 �†½Fl

; J
Δμ
 � ¼ 0,

which implies that Fl
 and JΔμ commute for all

l;Δ; μ. If we once again remember that JΔμ† ¼ J−Δμ

and that the eigenvalues come in pairs �Δ, then

½Fl†
 ; JΔμ � ¼ ½Fl

; J
Δμ
 � ¼ 0: ðB5Þ

(ii) Now consider condition Eq. (B3b). The first term on
the right-hand side can be obtained from Eq. (C5)
and is as follows:

PL‡PðJΔμ Þ¼
X
l

κlðFl†
 JΔμ Fl

−JΔμ Fl†
Fl

Þ

þ
X
l

κlðFl†
 JΔμ Fl

−Fl†
Fl

J
Δμ
 Þ:

This term is identically zero due to Eq. (B5),
reducing condition Eq. (B3b) to L‡

ðJΔμ Þ ¼ −i
ΔJΔμ . We now show that this implies

PjJΔμ⟫ ¼ 0 ðB6Þ

for all Δ and μ. By contradiction, assume JΔμ ð≠ 0Þ
is a left eigenmatrix of L. Then there must exist a
corresponding right eigenmatrix Ψ0

Δμ ¼ PðΨ0
ΔμÞ

since the sets of Ψ and J are biorthogonal (see, e.g.,
Ref. [78], Theorem 18). However, all right eigen-
matrices are contained in POpðHÞ by definition
Eq. (2.1), so we have a contradiction and JΔμ ¼ 0.

(iii) Finally, consider condition Eq. (B3c). Applying
Eq. (B6) removes the last term on the right-hand
side of that condition and simplifies it to

½L‡
 þ iΔP�ðJΔμ Þ ¼ −PL‡ðJΔμ Þ:

Now, we can show that the operator L‡
 þ iΔP

is invertible when restricted to POpðHÞ using a
proof by contradiction similar to the one used to
prove Eq. (B6). Inversion gives a formula for JΔμ
which is used along with Eq. (B6) to obtain the
statement. ■

Proposition 3.—The matrix Lκλ ¼ ⟪ΓκjLjΓλ⟫ is real.
Moreover,

Lλκ ¼ −Lκλ⇔L ¼ −i½H; ·� with Hamiltonian H: ðB7Þ

Proof.—To prove reality, use the definition of the
adjoint of L, Hermiticity of Γκ, and cyclicity under the
trace:

L⋆
κλ ¼ ⟪ΓλjL‡jΓκ⟫ ¼ ⟪LðΓλÞjΓκ⟫ ¼ ⟪ΓκjLjΓλ⟫ ¼ Lκλ:

⇐ Assume L generates unitary evolution. Then there
exists a Hamiltonian H such that LjΓκ⟫ ¼ −ij½H;Γκ�⟫
and L is antisymmetric:

Lλκ ¼ −iTrfΓλ½H;Γκ�g ¼ iTrfΓκ½H;Γλ�g ¼ −Lκλ:

⇒ (An alternative way to prove this part is to observe
that all eigenvalues of L lie on the imaginary axis and
use Theorem 18-3 in Ref. [78].) Assume Lκλ is anti-
symmetric, so L‡ ¼ −L. Then the dynamical semigroup
fetL; t ≥ 0g is isometric (norm-preserving): let t ≥ 0 and
jA⟫ ∈ OpðHÞ and observe that

⟪etLðAÞjetLðAÞ⟫ ¼ ⟪Aje−tLetLjA⟫ ¼ ⟪AjA⟫:

Since it is clearly invertible, etL∶OpðHÞ → OpðHÞ is a
surjective map. All surjective isometric one-parameter
dynamical semigroups can be expressed as etLðρÞ ¼
UtρU

†
t , with Ut belonging to a one-parameter unitary

group fUt; t ∈ Rg acting on H (Ref. [5], Theorem 6).
By Stone’s theorem on one-parameter unitary groups,
there then exists a Hamiltonian H such that Ut ¼ e−iHt

and LðρÞ ¼ −i½H; ρ�. ■

APPENDIX C: FOUR-CORNERS
DECOMPOSITION OF L

Based on conditions Eq. (2.1) and after simplifications
due to Proposition 1, the nonzero elements of Eq. (3.3)
acting on a Hermitian matrix ρ ¼ ρ þ ρ þ ρ are
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LðρÞ ¼ −i½H; ρ� þ
1

2

X
l

κlð2Fl
ρF

l†
 − Fl†

Fl
ρ − ρF

l†
Fl

Þ; ðC1Þ

LðρÞ ¼ −iðHρ − ρHÞ þ
1

2

X
l

κl½2Fl
ρF

l†
 − Fl†

Fl
ρ − ρðFl†FlÞ�; ðC2Þ

LðρÞ ¼ ½LðρÞ�†; ðC3Þ

LðρÞ ¼ −i½H; ρ� þ
1

2

X
l

κl½2Fl
ρF

l†
 − ðFl†FlÞρ − ρðFl†FlÞ�; ðC4Þ

PLPðρÞ ¼
X
l

κlðFl
ρF

l†
 − ρF

l†
Fl

Þ þ H:c:; ðC5Þ

PLPðρÞ ¼
X
l

κlðFl
ρF

l†
 − Fl†

Fl
ρÞ þ H:c:; ðC6Þ

PLPðρÞ ¼
X
l

κlFl
ρF

l†
 : ðC7Þ

Note that ðFl†FlÞ ¼ Fl†
Fl

 þ Fl†
Fl

 and that evolution
of coherences decouples: PLP ¼ PLP ¼ 0. Since
Fl
 ≠ 0, L [see Eq. (C4)] is not of Lindblad form and

instead ensures decay of states in  (see Ref. [80],
Proposition 3, and Ref. [171], Lemma 4).

APPENDIX D: CONDUCTIVITY FOR A
THERMAL LINDBLADIAN

Here, we compute the conductivity for the thermal
Landau Lindbladian for noninteracting particles, making
contact with Example 9 of Ref. [70]. The thermal
Lindbladian consists the Hamiltonian Eq. (4.8) along with
two jump operators, Fi ¼

ffiffiffiffiffi
2γ

p
bi and F̄i ¼

ffiffiffiffiffi
2γ̄

p
b†i , and the

effective temperature is given by

β≡ 1

ωc
log

�
γ

γ̄

�
: ðD1Þ

For this portion, we consider noninteracting particles. This
is necessary in order to interpret the Lindblad operator as
representing coupling to a thermal bath. We work in the
grand-canonical ensemble: our initial steady state is
ρ∞ ∝ eβðH−μNÞ, where N is the number operator and μ is
the chemical potential lying in a gap between the Landau
levels. Since F̄i is quite similar to Fi, its contribution is
calculated in analogous fashion and the temperature-
dependent conductivity tensor is

σςτðω; βÞ ¼
hνiωcðiωδςτ − ωc½1 − iðγ − γ̄Þ ωT

ω2
c
�ϵςτÞ

2πðω2
T − ω2

cÞ
; ðD2Þ

where we define ωT ¼ ωþ iðγ − γ̄Þ, the thermally aver-
aged filling factor is given by

hνi ¼
X
m

nF

�
ωc

�
mþ 1

2

�
; μ

�
; ðD3Þ

m sums over the occupied Landau levels, and nFðϵ; μÞ is the
Fermi distribution function.

APPENDIX E: HAMILTONIAN
ADIABATIC THEORY

Here, we review the adiabatic (Berry) connection for a
Hamiltonian system and the DFS case.

1. Hamiltonian case

First, let us review two important consequences of the
(Hamiltonian) quantum mechanical adiabatic theorem. In
this work, the adiabatic theorem holds by assumption. We
do not make the adiabatic approximation to HðsÞ [and,
later, LðsÞ [179]] since it is not sufficient for the adiabatic
theorem to hold; see Ref. [180] and references therein.
Adiabatic evolution can be thought of as either (1) being
generated by an effective operator [181] or (2) generating
transport of vectors in parameter space, leading to abelian
[182–185] or non-abelian [186] holonomies. We loosely
follow the excellent expositions in Chap. 2.1.2 of
Ref. [187] and Sec. 9 of Ref. [188]. We conclude with a
summary of four different ways [Eqs. (E17)–(E20)] of
writing holonomies for the nondegenerate case.
Let jψ ðtÞ

0 i be the instantaneous unique (up to a phase)
zero-energy ground state of a Hamiltonian HðtÞ. We
assume that the ground state is separated from all other
eigenstates ofHðtÞ by a nonzero excitation gap for all times
of interest. Let us also rescale time (s ¼ t=T) such that the
exact state jψðsÞi evolves according to
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1

T
∂sjψðsÞi ¼ −iHðsÞjψðsÞi: ðE1Þ

The adiabatic theorem states that jψðsÞi [with

jψð0Þi ¼ jψ ðs¼0Þ
0 i] remains an instantaneous eigenstate of

HðsÞ (up to a phase θ) in the limit as T → ∞, with

corrections of order Oð1=TÞ. Let PðsÞ
0 ¼ jψ ðsÞ

0 ihψ ðsÞ
0 j be

the projection onto the instantaneous ground state. In the
adiabatic limit,

jψðsÞi ¼ eiθðsÞjψ ðsÞ
0 i; ðE2Þ

and the initial projection Pð0Þ
0 evolves into

PðsÞ
0 ¼ UadðsÞPð0Þ

0 U†
adðsÞ. ðE3Þ

The adiabatic evolution operator Uad is determined by the
Kato equation

∂sUad ¼ −iKUad; ðE4Þ
with the so-called Kato Hamiltonian [181] (Ṗ0 ≡ ∂sP0)

K ¼ i½Ṗ0; P0�: ðE5Þ
The adiabatic operatorUad can be shown to satisfy Eq. (E3)
(see Ref. [187], Proposition 2.1.1) using

P0Ṗ0P0 ¼ Q0Ṗ0Q0 ¼ 0: ðE6Þ
The P0Ṗ0P0 ¼ 0 is a key consequence of the idempotence
of projections while Q0Ṗ0Q0 ¼ 0 is obtained by applica-
tion of the no-leak property Eq. (2.9); both are used
throughout the text. The adiabatic evolution operator is
then a product of exponentials of −iK ordered along the
path s0 ∈ ½0; s� (with path ordering denoted by P):

UadðsÞ ¼ P exp

�Z
s

0

½Ṗ0; P0�ds0
�
: ðE7Þ

Because of the intertwining property Eq. (E3), UadðsÞ
simultaneously transfers states in Pð0Þ

0 H to PðsÞ
0 H and states

in Qð0Þ
0 H to QðsÞ

0 H (with Q0 ≡ I − P0) without mixing the
two subspaces during the evolution. The term Ṗ0P0 in
Eq. (E5) is responsible for generating the adiabatic evolu-
tion of P0H, while the term P0Ṗ0 generates adiabatic
evolution ofQ0H. To see this, observe that the adiabatically

evolving state jψðsÞi ¼ UadðsÞjψ ðs¼0Þ
0 i ∈ PðsÞ

0 H obeys the
Schrödinger equation

∂sjψðsÞi ¼ ½Ṗ0; P0�jψðsÞi: ðE8Þ
Applying Eq. (E6), the second term in the commutator
can be removed without changing the evolution. Since
we are interested only in adiabatic evolution of the zero-
eigenvalue subspace P0H (and not its complement),
we can simplify Uad by removing the second term in
the Kato Hamiltonian. This results in the adiabatic
Schrödinger equation

∂sjψðsÞi ¼ Ṗ0P0jψðsÞi ðE9Þ
and effective adiabatic evolution operator

UðsÞ ¼ P exp

�Z
s

0

Ṗ0P0ds0
�
: ðE10Þ

We now assume that s parametrizes a path in the
parameter spaceM of some external time-dependent param-
eters of HðsÞ. For simplicity, we assume that M is simply
connected [145]. By writing P0 and Ṗ0 in terms of jψ0i and
explicitly differentiating, the adiabatic Schrödinger
equation (E9) becomes

∂sjψi ¼ ðI − P0Þ∂sjψi: ðE11Þ
This implies a parallel transport condition,

0 ¼ P0∂sjψi ¼ hψ j∂sψijψi; ðE12Þ
which describes how tomove the state vector from one point
in M to another. The particular condition resulting from
adiabatic evolution eliminates any first-order deviation from
the unit overlap between nearby adiabatically evolving
states [189]:

hψðsþ δsÞjψðsÞi ¼ 1þOðδs2Þ: ðE13Þ
Therefore, we show two interpretations stemming from the
adiabatic theorem. The first is that adiabatic evolution of

jψðsÞi [with jψð0Þi ¼ jψ ðs¼0Þ
0 i] is generated (in the ordinary

quantum mechanical sense) by the Ṗ0P0 piece of the Kato
Hamiltonian K. The second is that adiabatic evolution
realizes parallel transport of jψðsÞi along a curve in
parameter space. As we show now, either framework can
be used to determine the adiabatically evolved state and the
resulting Berry phase.
We now define a coordinate basis fxαg for the parameter

space M. In other words,

∂t ¼
1

T
∂s ¼

1

T

X
α

ẋα∂α; ðE14Þ

where ∂s is the derivative along the path, ∂α ≡ ∂=∂xα are
derivatives in various directions in parameter space, and
ẋα ≡ dxα

ds are (unitless) parameter velocities. Combining
Eqs. (E2) and (E14) with the parallel transport condition
Eq. (E12) yields

0 ¼ P0∂sjψi ¼ i
X
α

ẋαð∂αθ − Aα;00Þjψi; ðE15Þ

where the adiabatic (Berry) connection Aα;00 ¼ ihψ0j∂αψ0i
is a vector (gauge) potential in parameter space. The
reason we can think of Aα;00 as a gauge potential is
because it transforms as one under gauge transformations
jψ0i → eiϑjψ0i, where ϑ ∈ R:

Aα;00 → Aα;00 − ∂αϑ: ðE16Þ
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These structures arise because the adiabatic theorem has
furnished for us a vector bundle over the parameter-space
manifold M [188,189]. More formally, given the trivial
bundleM × H (where at each point inM we have a copy of
the full Hilbert space H), the projection P0 defines a
(possibly nontrivial) sub-bundle of M × H (in this case, a
line bundle, since P0 is rank one). The trivial bundle has
a covariant derivative ∇α ≡ ∂α with an associated connec-
tion that can be taken to vanish. The Berry connection Aα;00

is then simply the connection associated with the covariant
derivative P0∇α induced on the sub-bundle defined by P0.
The Berry connection describes what happens to the

initial state vector as it is parallel transported. It may happen
that the vector does not return to itself after transport around
a closed path in parameter space (due to, e.g., curvature or
nonsimple connectedness of M). Given an initial condition
θð0Þ ¼ 0, the parallel transport condition Eq. (E15)
uniquely determines how θ will change during adiabatic
traversal of a path C parametrized by s ∈ ½0; 1�, i.e., from a

point xðs¼0Þ
α ∈ M to xð1Þ

α . For a closed path (xð1Þ
α ¼ xð0Þ

α ) and
assuming Aα;00 is defined uniquely for the whole path
[146], the state transforms as jψð0Þi → Bjψð0Þi, with
resulting gauge-invariant holonomy (here, Berry phase)

B≡ exp

�
i
X
α

I
C
Aα;00dxα

�
: ðE17Þ

Alternatively, we can use Eq. (E14) and the Schrödinger
equation (E9): jψð0Þi → Ujψð0Þi, with holonomy

U ≡ P exp
�X

α

I
C
∂αP0P0dxα

�
: ðE18Þ

Since the geometric and Kato Hamiltonian formulations of
adiabatic evolution are equivalent, Eqs. (E17) and (E18)
offer two ways to get to the same answer. They reveal two
representations of the Berry connection and holonomy: the
coordinate representation fiAα;00; Bg, which determines
evolution of θ from Eq. (E2), and the operator representa-
tion f∂αP0P0; Ug, which determines evolution of jψ0i [see
Proposition 1.2 of Ref. [190] and Eq. (5) of Ref. [111]].
Despite the latter being a path-ordered product of matrices,
it simplifies to the Berry phase in the case of closed paths.
For completeness, we also state an alternative form for

each holonomy representation [Eqs. (E17) and (E18)]. If
there are two or more parameters, then the coordinate
representation can be expressed in terms of the (here,
Abelian) Berry curvature Fαβ;00 ≡ ∂αAβ;00 − ∂βAα;00 using
Stokes’s theorem:

B ¼ exp

�
i
2

X
α;β

Z Z
S
Fαβ;00dxαdxβ

�
; ðE19Þ

where S is a surface whose boundary is the contour C. The
operator representation can also be written as a product of
the path-dependent projections P0:

U ¼ P
Y
s∈C

PðsÞ
0 ; ðE20Þ

where P
Q

denotes a continuous product ordered from
right to left along the path C [see Eq. (47) of Ref. [72] and
Proposition 1 of Ref. [60]]. This form of the holonomy
should be reminiscent of the Pancharatnam phase [183,187]
and, more generally, of a dynamical quantum Zeno effect
(Refs. [63,64,66]; see also Refs. [97,98]).

2. DFS case

We briefly provide, in addition to Eq. (5.17), another
proof of unitarity of the holonomy for the DFS case. Here,
we do not need the reference basis of Sec. V B, so we let
jΨDFS

μ ⟫≡ SðsÞjΨ̄DFS
μ ⟫ and the same for ⟪Jμj ¼ ⟪ΨDFS

μ j.
Now Aα from Eq. (5.13) reduces to the coordinate form of
the DFS connection:

ADFS
α;μν ¼ ⟪ΨDFS

μ j∂αΨDFS
ν ⟫ ¼ TrfΨDFS

μ ∂αΨDFS
ν g: ðE21Þ

Although this can be equivalently expressed using the
Wilczek-Zee adiabatic connection [186] ADFS

kl ¼ihψkj∂αψ li,
we briefly examine the superoperator counterpart. Sticking
with the convention that

ΨDFS
0 ≡ 1ffiffiffi

d
p PDFS ¼

1ffiffiffi
d

p
Xd−1
k¼0

jψkihψkj

is the only traceful element and using Eq. (E6),
ΨDFS

0 ∂αΨDFS
0 ΨDFS

0 ¼ 0, we see that ADFS
α;μ0 ¼ ADFS

α;0μ ¼ 0 for
all μ. Thus, ADFS

α consists of a direct sum of zero with a
ðd2 − 1Þ-dimensional antisymmetric matrix acting on the
Bloch vector components fjΨDFS

μ≠0⟫g. Since the latter is
antisymmetric, the holonomy is unitary.
Formally, letting OpðHÞ⋆ be the space of traceless

d-dimensional Hermitian matrices, PDFS defines a sub-
bundle of the trivial bundle M × OpðHÞ⋆ and ADFS

α is the
connection associated with the covariant derivative PDFS∂α

induced on that sub-bundle.

APPENDIX F: HAMILTONIAN QGT

Here, we review the Hamiltonian quantum geometric
tensor. Some relevant quantities for the Hamiltonian,
degenerate Hamiltonian or DFS, and NS cases are sum-
marized in Table I.

1. Hamiltonian case

First, let us review the nondegenerate Hamiltonian case
before generalizing to the degenerate Hamiltonians in oper-
ator or superoperator form. We recommend Ref. [191] for a
more detailed exposition.
Continuing from Sec. E 1, we begin with an

instantaneous zero-energy state jψ0i and projection
P0 ¼ jψ0ihψ0j, which are functions of a vector of
control parameters fxαg. The distance between the
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projections PðsÞ
0 and PðsþδsÞ

0 along a path parametrized by

s ∈ ½0; 1� (with parameter vectors xðsÞ
α at each s) is

governed by the QGT:

Qαβ;00 ¼ hψ0j∂αP0∂βP0jψ0i ðF1aÞ

¼ h∂αψ0jðI − P0Þj∂βψ0i: ðF1bÞ

The latter form can be obtained from the former by explicit
differentiation of P0 and ∂αP0∂βP0 ¼ ð∂αP0Þð∂βP0Þ by
convention. The I − P0 term makes Qαβ;00 invariant upon
the gauge transformations jψ0i → eiϑjψ0i. The tensor can be
split into symmetric and antisymmetric parts,

2Qαβ;00 ¼ Mαβ;00 − iFαβ;00; ðF2Þ

which coincide with its real and imaginary parts. The anti-
symmetric part is none other than the adiabatic or Berry
curvature from Eq. (E19). The symmetric part is the quantum
Fubini-Study metric tensor [74],

Mαβ;00 ¼ TrfP0∂ðαP0∂βÞP0g ¼ Trf∂αP0∂βP0g; ðF3Þ

where AðαBβÞ ¼ AαBβ þ AβBα, and the latter form can
be obtained using P0∂αP0P0 ¼ 0. This quantity is
manifestly symmetric in α, β and real; it is also non-
negative when evaluated in parameter space (see
Ref. [192], Appendix D).

2. DFS case

For degenerate Hamiltonian systems [192,193] and in
the DFS case, the QGT QDFS is a tensor in both parameter
(α, β) and state (k, l) indices and can be written as

QDFS
αβ;kl ¼ hψkj∂αPDFS∂βPDFSjψ li ðF4aÞ

¼ h∂αψkjðI − PDFSÞj∂βψ li; ðF4bÞ

where PDFS ¼ P
d−1
k¼0 jψkihψkj is the projection onto the

degenerate zero eigenspace of HðsÞ. Since projections are
invariant under changes of basis of their constituents, it is
easy to see that QDFS

αβ → R†QDFS
αβ R under DFS changes of

basis jψki → jψ liRlk for R ∈ UðdÞ. Notice that the QGT in
Eq. (F4b) consists of overlaps between states outside of the
zero eigenspace. For our applications, we write the QGT in a
third way such that it consists of overlaps within the zero
eigenspace only:

QDFS
αβ;kl ¼ −i∂αADFS

β;kl − ðADFS
α ADFS

β Þkl − hψkj∂α∂βψ li; ðF4cÞ

where ADFS
α is the DFS Berry connection, and we use

0 ¼ ∂βhψkjψ li ¼ h∂βψkjψ li þ hψkj∂βψ li;
∂αhψkj∂βψ li ¼ h∂αψkj∂βψ li þ hψkj∂α∂βψ li: ðF5Þ

TheBerry curvature is the part of theQGTantisymmetric in α,
β (here, also the imaginary part of the QGT): FDFS

αβ ¼ iQDFS
½αβ� .

From Eq. (F4c), we recover the form of the DFS Berry
curvature.
The symmetric part of the QGT appears in the infini-

tesimal distance between nearby parallel transported rays
(i.e., states of arbitrary phase) ψðsÞ and ψðsþ δsÞ in the
degenerate subspace:

h∂sψ j∂sψi ¼ h∂sψ jðI − PDFSÞj∂sψi; ðF6Þ

where we use the parallel transport condition
PDFSj∂sψi ¼ 0. Expanding ∂s into parameter derivatives
using Eq. (E14) and writing out jψi ¼ P

d−1
k¼0 ckjψki yields

h∂sψ j∂sψi ¼
1

2

X
α;β

Xd−1
k;l¼0

QDFS
ðαβÞ;klẋαẋβc⋆kcl: ðF7Þ

The corresponding Fubini-Study metric on the parameter
space M is QDFS

ðαβÞ traced over the degenerate subspace:

MDFS
αβ ≡Xd−1

k¼0

QDFS
ðαβÞ;kk ¼ ⟪PDFSj∂ðαPDFS∂βÞPDFS⟫: ðF8Þ

All of this reasoning easily extends to the superoperator
formalism (jψki → jΨDFS

μ ⟫). The superoperator QGT cor-
responding to QDFS can be written as

QDFS
αβ;μν ¼ ⟪ΨDFS

μ j∂αPDFS∂βPDFSjΨDFS
ν ⟫

¼ ∂αADFS
β;μν þ ðADFS

α ADFS
β Þμν − ⟪ΨDFS

μ j∂α∂βΨDFS
ν ⟫;

ðF9Þ

where ADFS
α is the adiabatic connection Eq. (E21). The

QGT is a real matrix (since ADFS
α is real) and consists of

parts symmetric (QDFS
ðαβÞ) and antisymmetric (QDFS

½αβ� ) in α,

β. Observing the second line of Eq. (F9), it should be
easy to see that the Berry curvature FDFS

αβ ¼ QDFS
½αβ� . The

symmetric part of the superoperator QGT appears in the
infinitesimal Hilbert-Schmidt distance (Ref. [174],
Sec. 14.3) between nearby parallel transported DFS
states ρðsÞ and ρðsþ δsÞ:

⟪∂sρj∂sρ⟫ ¼ ⟪∂sρjðI − PDFSÞj∂sρ⟫; ðF10Þ

wherewe use the parallel transport conditionPDFSj∂sρ⟫¼0.
Similar manipulations as with the operator QGT,
including the expansion jρ⟫ ¼ P

d2−1
μ¼0 cμjΨDFS

ν ⟫, yield
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⟪∂sρ∞j∂sρ∞⟫ ¼ 1
2

X
α;β

Xd2−1
μ;ν¼0

QDFS
ðαβÞ;μνẋαẋβcμcν: ðF11Þ

The corresponding superoperator metric

MDFS
αβ ≡ TRfPDFS∂ðαPDFS∂βÞPDFSg; ðF12Þ

where TR is the trace in superoperator space, is the
symmetric part of the superoperator QGT traced over
the degenerate subspace. Since OpðHÞ ¼ H ⊗ H⋆, it is
not surprising that MDFS

αβ is proportional to the operator
metric MDFS

αβ :

MDFS
αβ ¼

Xd2−1
μ¼0

QDFS
ðαβÞ;μμ ¼ 2dMDFS

αβ : ðF13Þ

APPENDIX G: OTHER GEOMETRIC TENSORS

In Sec. VI, we show that the antisymmetric part of the
QGT

Q ¼ PΨ∂PΨ∂PΨPΨ;

corresponds to the curvature F associated with the
adiabatic connection A from Sec. V. We thus postulate
that this QGT and its corresponding symmetric part
should be relevant in determining distances between
adiabatically connected Lindbladian steady states.
However, the story does not end there as there are
two more tensorial quantities that can be defined using
the steady-state subspace. The first is an extension of
the Fubini-Study metric to non- or pseudo-Hermitian
Hamiltonians [151,152,194,195] (different from
Ref. [150]) that can also be generalized to Lindblad
systems; we do not further comment on it here. The
second is the alternative geometric tensor,

Qalt ≡ P‡
Ψ∂P‡

Ψ∂PΨPΨ. ðG1Þ

We show that Qalt appears in a bound on the adiabatic
path length for Lindbladian systems, which has tradi-
tionally been used to determine the shortest possible
distance between states in a parameter space M. Here,
we introduce the adiabatic path length, generalize it to
Lindbladians, and comment on Qalt.
The adiabatic path length for Hamiltonian systems

quantifies the distance between two adiabatically con-
nected states jψ ðs¼0Þ

0 i and jψ ð1Þ
0 i. The adiabatic evolution

operator (derived in Sec. E 1) for an arbitrary path s ∈ ½0; 1�
and for initial zero-energy state jψ ð0Þ

0 i is

Uð1Þ ¼ P exp

�Z
1

0

Ṗ0P0ds

�
: ðG2Þ

Consider the Frobenius norm Eq. (A1) of Uð1Þ. By
expanding the definition of the path-ordered exponential,
one can show that ∥Uð1Þ∥ ≤ expðSÞ with path length

L0 ≡
Z

1

0

∥Ṗ0P0∥ds: ðG3Þ

Remembering that ∥A∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrfA†Ag

p
and writing ∂s in

terms of parameter derivatives, we see that the Fubini-
Study metric appears in the path length:

∥Ṗ0P0∥2 ¼
1

2

X
α;β

Mαβ;00ẋαẋβ: ðG4Þ

Therefore, the shortest path between states in Hilbert space
projects to a geodesic in parameter space satisfying the
Euler-Lagrange equations associated with the metricMαβ;00

and minimizing the path length [see, e.g., Ref. [148],
Eq. (7.58)] (with sum implied)

L0 ¼
Z

1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Gαβ;00ẋαẋβ

r
ds: ðG5Þ

In Hamiltonian systems, the adiabatic path length appears
in bounds on corrections to adiabatic evolution (Ref. [196],
Theorem 3; see also Ref. [192]). This path length is also
applicable when one wants to simulate adiabatic evolution
in a much shorter time (counterdiabatic or superadiabatic
dynamics [197–199] or shortcuts to adiabaticity [200,201])
by explicitly engineering the Kato Hamiltonian i½Ṗ0; P0�
from Eq. (E5).
The tensor Qalt

αβ arises in the computation of the corre-
sponding Lindbladian adiabatic path length,

L≡
Z

1

0

∥ṖΨPΨ∥ds; ðG6Þ

where the superoperator norm of ṖΨPΨ is the analogue
of the operator Frobenius norm from Eq. (A1):
∥O∥≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TRfO‡Og
p

, where O is a superoperator. This
path length provides an upper bound on the norm of the
Lindblad adiabatic evolution superoperator Eq. (5.6):

Uð1;0Þ ¼ P exp

�Z
1

0

ṖΨPΨds

�
: ðG7Þ

Using properties of norms and assuming one NS block, it is
straightforward to show that

∥Uð1;0Þ∥ ≤ expðLÞ with L ¼
Z

1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
daxMalt

αβẋαẋβ

r
ds

ðG8Þ
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(with sum over α, β implied). The metric governing this
path length turns out to be

Malt
αβ ¼ ⟪ϱaxjϱax⟫

X
α;β

Qalt
ðαβÞ;μμ: ðG9Þ

For a unique steady state ϱ, this alternative metric
reduces to the Hilbert-Schmidt metric

Malt
αβ ¼ ⟪∂ðαϱj∂βÞϱ⟫: ðG10Þ

Note the subtle difference between this metric and the QGT
metric [Eq. (6.7)]

Mαβ ¼ ⟪∂ðαPj∂βÞϱ⟫: ðG11Þ

This difference is precisely due to the absence of ϱ in the
left eigenmatrices J. For the QGT metric, ϱ is never in
the same trace twice, while for the alternative metric, the
presence of P‡

Ψ yields such terms. We note that for a pure
steady state ϱ ¼ P (with P being rank one), both metric
tensors reduce to the Fubini-Study metric:

Mαβ ¼ Malt
αβ ¼ ⟪∂ðαPj∂βÞP⟫: ðG12Þ

Another notable example is the DFS case (ϱax ¼ 1). In
that case, Jμ ¼ Ψμ—the QGT and alternative tensor
become equal (Qalt ¼ Q). Therefore, it is the presence
of ϱax that allows for two different metrics Mαβ and Malt

αβ.
However, for the NS case, the “alternative” curvature
Qalt

½αβ�;μν does not reduce to the adiabatic curvature F αβ;μν

associated with the connection Aα (unlike the QGT
curvature). How this subtle difference between Qαβ

and Qalt
αβ for the NS and unique steady-state cases is

relevant in determining distances between adiabatic steady
states of Lindbladians should be a subject of future
investigation.

[1] G. Lindblad, On the Generators of Quantum Dynamical
Semigroups, Commun. Math. Phys. 48, 119 (1976).

[2] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan,
Completely Positive Dynamical Semigroups of N-Level
Systems, J. Math. Phys. (N.Y.) 17, 821 (1976).

[3] A. A. Belavin, B. Ya. Zel’dovich, A. M. Perelomov, and
V. S. Popov, Relaxation of Quantum Systems with
Equidistant Spectra, Sov. Phys. JETP 29, 145 (1969).

[4] R. H. Lehmberg, Radiation from an N-Atom System. I.
General Formalism, Phys. Rev. A 2, 883 (1970).

[5] A. Kossakowski, On Quantum Statistical Mechanics of
Non-Hamiltonian Systems, Rep. Math. Phys. 3, 247
(1972).

[6] T. Banks, L. Susskind, and M. E. Peskin, Difficulties for
the Evolution of Pure States into Mixed States, Nucl. Phys.
B244, 125 (1984).

[7] P. Zanardi and M. Rasetti, Noiseless Quantum Codes,
Phys. Rev. Lett. 79, 3306 (1997).

[8] D. A. Lidar, I. L. Chuang, and K. B. Whaley,
Decoherence-Free Subspaces for Quantum Computation,
Phys. Rev. Lett. 81, 2594 (1998).

[9] E. Knill, R. Laflamme, and L. Viola, Theory of Quantum
Error Correction for General Noise, Phys. Rev. Lett. 84,
2525 (2000).

[10] J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley,
Theory of Decoherence-Free Fault-Tolerant Universal
Quantum Computation, Phys. Rev. A 63, 042307
(2001).

[11] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Topology
by Dissipation in Atomic Quantum Wires, Nat. Phys. 7,
971 (2011).

[12] C.-E. Bardyn, M. A. Baranov, E. Rico, A. Imamoglu, P.
Zoller, and S. Diehl, Majorana Modes in Driven-
Dissipative Atomic Superfluids with a Zero Chern Number,
Phys. Rev. Lett. 109, 130402 (2012).

[13] J. Dengis, R. König, and F. Pastawski, An Optimal
Dissipative Encoder for the Toric Code, New J. Phys.
16 013023 (2014).

[14] P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G.
White, Experimental Verification of Decoherence-Free
Subspaces, Science 290, 498 (2000).

[15] M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A.
Cabello, and H. Weinfurter, Decoherence-Free Quantum
Information Processing with Four-Photon Entangled
States, Phys. Rev. Lett. 92, 107901 (2004).

[16] L. Viola, E. M. Fortunato, M. A. Pravia, E. Knill, R.
Laflamme, and D. G. Cory, Experimental Realization of
Noiseless Subsystems for Quantum Information Process-
ing, Science 293, 2059 (2001).

[17] N. Boulant, L. Viola, E. M. Fortunato, and D. G. Cory,
Experimental Implementation of a Concatenated Quantum
Error-Correcting Code., Phys. Rev. Lett. 94, 130501
(2005).

[18] D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M.
Itano, C. Monroe, and D. J. Wineland, A Decoherence-
Free Quantum Memory Using Trapped Ions, Science 291,
1013 (2001).

[19] C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt,
Designer Atoms’ for Quantum Metrology, Nature
(London) 443, 316 (2006).

[20] J. T. Barreiro, P. Schindler, O. Gühne, T. Monz, M.
Chwalla, C. F. Roos, M. Hennrich, and R. Blatt, Exper-
imental Multiparticle Entanglement Dynamics Induced by
Decoherence, Nat. Phys. 6, 943 (2010).

[21] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz,
M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R.
Blatt, An Open-System Quantum Simulator with Trapped
Ions, Nature (London) 470, 486 (2011).

[22] P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A.
Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller, and
R. Blatt, Quantum Simulation of Dynamical Maps with
Trapped Ions, Nat. Phys. 9, 361 (2013).

[23] T. Pruttivarasin, M. Ramm, S. G. Porsev, I. I. Tupitsyn,
M. S. Safronova, M. A. Hohensee, and H. Häffner,

GEOMETRY AND RESPONSE OF LINDBLADIANS PHYS. REV. X 6, 041031 (2016)

041031-31



Michelson-Morley Analogue for Electrons Using Trapped
Ions to Test Lorentz Symmetry, Nature (London) 517, 592
(2015).

[24] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J.
Hatridge, M. Reagor, L. Frunzio, R. J. Schoelkopf, M.
Mirrahimi, and M. H. Devoret, Confining the State of Light
to a Quantum Manifold by Engineered Two-Photon Loss,
Science 347, 853 (2015).

[25] B. Kraus, H. Büchler, S. Diehl, A. Kantian, A. Micheli,
and P. Zoller, Preparation of Entangled States by
Quantum Markov Processes, Phys. Rev. A 78, 042307
(2008).

[26] F. Verstraete, M.M. Wolf, and J. I. Cirac, Quantum
Computation and Quantum-State Engineering Driven by
Dissipation, Nat. Phys. 5, 633 (2009).

[27] M. J. Kastoryano, F. Reiter, and A. S. Sorensen, Dissipa-
tive Preparation of Entanglement in Optical Cavities,
Phys. Rev. Lett. 106, 090502 (2011).

[28] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski,
J. M. Petersen, J. I. Cirac, and E. S. Polzik, Entanglement
Generated by Dissipation and Steady State Entanglement
of Two Macroscopic Objects, Phys. Rev. Lett. 107, 080503
(2011).

[29] M. Müller, S. Diehl, G. Pupillo, and P. Zoller, in Advances
in Atomic, Molecular, and Optical Physics, edited by P.
Berman, E. Arimondo, and C. Lin (Academic Press,
New York, 2012), Vol. 61, pp. 1–80.

[30] G. Morigi, J. Eschner, C. Cormick, Y. Lin, D. Leibfried,
and D. J. Wineland, Dissipative Quantum Control of a
Spin Chain, Phys. Rev. Lett. 115, 200502 (2015).

[31] F. Iemini, D. Rossini, R. Fazio, S. Diehl, and L.
Mazza, Dissipative Topological Superconductors in
Number-Conserving Systems, Phys. Rev. B 93, 115113
(2016).

[32] P. D. Johnson, F. Ticozzi, and L. Viola, General Fixed
Points of Quasi-Local Frustration-Free Quantum Semi-
groups: From Invariance to Stabilization, Quantum Inf.
Comput. 16, 0657 (2016).

[33] T. Prosen, Matrix Product Solutions of Boundary Driven
Quantum Chains, J. Phys. A 48, 373001 (2015).

[34] M. Žnidarič, Dissipative Remote-State Preparation in
an Interacting Medium, Phys. Rev. Lett. 116, 030403
(2016).

[35] F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A.
Weichselbaum, and J. von Delft, Lindblad-Driven Discre-
tized Leads for Non-Equilibrium Steady-State Transport in
Quantum Impurity Models: Recovering the Continuum
Limit, arXiv:1604.02050.

[36] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler,
and P. Zoller, Quantum States and Phases in Driven Open
Quantum Systems with Cold Atoms, Nat. Phys. 4, 878
(2008).

[37] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg Quantum Simulator, Nat. Phys. 6, 382
(2010).

[38] N. R. Cooper and J. Dalibard, Reaching Fractional Quan-
tum Hall States with Optical Flux Lattices, Phys. Rev. Lett.
110, 185301 (2013).

[39] N. Y. Yao, A. V. Gorshkov, C. R. Laumann, A. M. Läuchli,
J. Ye, and M. D. Lukin, Realizing Fractional Chern
Insulators in Dipolar Spin Systems, Phys. Rev. Lett.
110, 185302 (2013).

[40] E. Kapit, M. Hafezi, and S. H. Simon, Induced Self-
Stabilization in Fractional Quantum Hall States of Light,
Phys. Rev. X 4, 031039 (2014).

[41] J. C. Budich, P. Zoller, and S. Diehl, Dissipative Prepa-
ration of Chern Insulators, Phys. Rev. A 91, 042117
(2015).

[42] S. Caspar, F. Hebenstreit, D. Mesterházy, and U. J. Wiese,
Dynamics of Dissipative Bose-Einstein Condensation,
Phys. Rev. A 93, 021602 (2016).

[43] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Measuring the Chern Number of Hofstadter
Bands with Ultracold Bosonic Atoms, Nat. Phys. 11, 162
(2014).

[44] T. Li, L. Duca, M. Reitter, F. Grusdt, E. Demler, M. Endres,
M. Schleier-Smith, I. Bloch, and U. Schneider, Exper-
imental Reconstruction of Wilson Lines in Bloch Bands,
Science 352, 1094 (2016).

[45] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and
L. Fallani, Observation of Chiral Edge States with Neutral
Fermions in Synthetic Hall Ribbons, Science 349, 1510
(2015).

[46] J. Kaczmarczyk, H. Weimer, and M. Lemeshko, Dissipa-
tive Preparation of Antiferromagnetic Order in the Fermi-
Hubbard Model, New J. Phys. 18 093042 (2016).

[47] I. Carusotto, D. Gerace, H. E. Tureci, S. De Liberato, C.
Ciuti, and A. Imamoğlu, Fermionized Photons in an Array
of Driven Dissipative Nonlinear Cavities, Phys. Rev. Lett.
103, 033601 (2009).

[48] A. Tomadin, V. Giovannetti, R. Fazio, D. Gerace, I.
Carusotto, H. E. Türeci, and A. Imamoglu, Signatures of
the Superfluid-Insulator Phase Transition in Laser-Driven
Dissipative Nonlinear Cavity Arrays, Phys. Rev. A 81,
061801(R) (2010).

[49] I. Carusotto and C. Ciuti, Quantum Fluids of Light, Rev.
Mod. Phys. 85, 299 (2013).

[50] V. V. Albert and L. Jiang, Symmetries and Conserved
Quantities in Lindblad Master Equations, Phys. Rev. A 89,
022118 (2014).

[51] B. Buča and T. Prosen, A Note on Symmetry Reductions of
the Lindblad Equation: Transport in Constrained Open
Spin Chains, New J. Phys. 14, 073007 (2012).

[52] R. Alicki, On the Detailed Balance Condition for
Non-Hamiltonian Systems, Rep. Math. Phys. 10, 249
(1976).

[53] W. De Roeck and C. Maes, Steady State Fluctuations of the
Dissipated Heat for a Quantum Stochastic Model, Rev.
Math. Phys. 18, 619 (2006).

[54] V. Jakšić, C.-A. Pillet, and M. Westrich, Entropic Fluc-
tuations of Quantum Dynamical Semigroups, J. Stat. Phys.
154, 153 (2014).

[55] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito,
Thermodynamics of Quantum-Jump-Conditioned Feed-
back Control, Phys. Rev. E 88, 062107 (2013).

ALBERT, BRADLYN, FRAAS, and JIANG PHYS. REV. X 6, 041031 (2016)

041031-32



[56] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, England, 2011).

[57] H. Lu, C. Liu, D.-S. Wang, L.-K. Chen, Z.-D. Li,
X.-C. Yao, L. Li, N.-L. Liu, C.-Z. Peng, B. C. Sanders,
Y.-A. Chen, and J.-W. Pan, Universal Digital Photonic
Single-Qubit Quantum Channel Simulator, arXiv:
1505.02879.

[58] B. M. Terhal, Quantum Error Correction for Quantum
Memories, Rev. Mod. Phys. 87, 307 (2015).

[59] P. Zanardi and L. Campos Venuti, Coherent Quantum
Dynamics in Steady-State Manifolds of Strongly
Dissipative Systems, Phys. Rev. Lett. 113, 240406
(2014).

[60] P. Zanardi and L. Campos Venuti, Geometry, Robustness,
and Emerging Unitarity in Dissipation-Projected Dynam-
ics, Phys. Rev. A 91, 052324 (2015).

[61] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard,
R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynami-
cally Protected Cat-Qubits: A New Paradigm for Univer-
sal Quantum Computation, New J. Phys. 16, 045014
(2014).

[62] V. Paulisch, H. J. Kimble, and A. González-Tudela, Uni-
versal Quantum Computation in Waveguide QED Using
Decoherence Free Subspaces, New J. Phys. 18, 043041
(2016).

[63] P. Facchi and S. Pascazio,Quantum Zeno Subspaces, Phys.
Rev. Lett. 89, 080401 (2002).

[64] F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S.
Cataliotti, F. Caruso, and A. Smerzi, Experimental Reali-
zation of Quantum Zeno Dynamics, Nat. Commun. 5, 3194
(2014).

[65] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche,
J.-M. Raimond, M. Brune, and S. Gleyzes, Confined
Quantum Zeno Dynamics of a Watched Atomic Arrow,
Nat. Phys. 10, 715 (2014).

[66] C. Arenz, D. Burgarth, P. Facchi, V. Giovannetti, H.
Nakazato, S. Pascazio, and K. Yuasa, Universal Control
Induced by Noise, Phys. Rev. A 93, 062308 (2016).

[67] A. Carollo, M. F. Santos, and V. Vedral, Coherent Quan-
tum Evolution via Reservoir Driven Holonomies, Phys.
Rev. Lett. 96, 020403 (2006).

[68] M. S. Sarandy and D. A. Lidar, Abelian and Non-Abelian
Geometric Phases in Adiabatic Open Quantum Systems,
Phys. Rev. A 73, 062101 (2006).

[69] O. Oreshkov and J. Calsamiglia, Adiabatic Markovian
Dynamics, Phys. Rev. Lett. 105, 050503 (2010).

[70] J. E. Avron, M. Fraas, and G. M. Graf, Adiabatic
Response for Lindblad Dynamics, J. Stat. Phys. 148,
800 (2012).

[71] V. V. Albert, C. Shu, S. Krastanov, C. Shen, R.-B. Liu,
Z.-B. Yang, R. J. Schoelkopf, M. Mirrahimi, M. H.
Devoret, and L. Jiang, Holonomic Quantum Control with
Continuous Variable Systems, Phys. Rev. Lett. 116,
140502 (2016).

[72] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, Adiabatic
Theorems for Generators of Contracting Evolutions,
Commun. Math. Phys. 314, 163 (2012).

[73] P. Zanardi and M. Rasetti, Holonomic Quantum Compu-
tation, Phys. Lett. A 264, 94 (1999).

[74] J. P. Provost and G. Vallee, Riemannian Structure on
Manifolds of Quantum States, Commun. Math. Phys.
76, 289 (1980).

[75] M. V. Berry, in Geometric Phases in Physics, edited by F.
Wilczek and A. Shapere (World Scientific, Singapore,
1989), Chap. 1.

[76] R. Kubo, Statistical-Mechanical Theory of Irreversible
Processes. I. General Theory and Simple Applications to
Magnetic and Conduction Problems, J. Phys. Soc. Jpn. 12,
570 (1957).

[77] L. P. Kadanoff and P. C. Martin, Hydrodynamic Equations
and Correlation Functions, Ann. Phys. (N.Y.) 24, 419
(1963).

[78] B. Baumgartner and H. Narnhofer, Analysis of Quantum
Semigroups with GKS-Lindblad Generators II. General, J.
Phys. A 41, 32 (2008).

[79] R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola,
Information-Preserving Structures: A General Framework
for Quantum Zero-Error Information, Phys. Rev. A 82,
062306 (2010).

[80] F. Ticozzi and L. Viola, Quantum Markovian Subsystems:
Invariance, Attractivity, and Control, IEEE Trans. Autom.
Control 53, 2048 (2008).

[81] J. Deschamps, F. Fagnola, E. Sasso, and V. Umanita’,
Structure of Uniformly Continuous Quantum Markov
Semigroups, Rev. Math. Phys. 28, 1650003 (2016).

[82] G. Lindblad, A General No-Cloning Theorem, Lett. Math.
Phys. 47, 189 (1999).

[83] R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola,
Characterizing the Structure of Preserved Information in
Quantum Processes, Phys. Rev. Lett. 100, 030501 (2008).

[84] B. Baumgartner and H. Narnhofer, The Structures of State
Space Concerning Quantum Dynamical Semigroups, Rev.
Math. Phys. 24, 1250001 (2012).

[85] R. Carbone and Y. Pautrat, Irreducible Decompositions
and Stationary States of Quantum Channels, Rep. Math.
Phys. 77, 293 (2016).

[86] M. M. Wolf, Quantum Channels & Operations Guided
Tour (2010), http://www‑m5.ma.tum.de/foswiki/pub/M5/
Allgemeines/MichaelWolf/QChannelLecture.pdf.

[87] A. Shabani and D. A. Lidar, Theory of Initialization-Free
Decoherence-Free Subspaces and Subsystems, Phys. Rev.
A 72, 042303 (2005).

[88] G. I. Cirillo and F. Ticozzi, Decompositions of Hilbert
Spaces, Stability Analysis and Convergence Probabilities
for Discrete-Time Quantum Dynamical Semigroups, J.
Phys. A 48, 085302 (2015).

[89] J. Novotný, G. Alber, and I. Jex, Asymptotic Properties of
Quantum Markov Chains, J. Phys. A 45, 485301 (2012).

[90] M. Jakob and S. Stenholm, Variational Functions in
Degenerate Open Quantum Systems, Phys. Rev. A 69,
042105 (2004).

[91] L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh Field
Theory for Driven Open Quantum Systems, Rep. Prog.
Phys. 79 096001 (2016).

[92] S. Lloyd and L. Viola, Engineering Quantum Dynamics,
Phys. Rev. A 65, 010101 (2001).

[93] E. Andersson and D. K. L. Oi, Binary Search Trees for
Generalized Measurements, Phys. Rev. A 77, 052104
(2008).

GEOMETRY AND RESPONSE OF LINDBLADIANS PHYS. REV. X 6, 041031 (2016)

041031-33



[94] D.-S. Wang and B. C. Sanders, Quantum Circuit Design
for Accurate Simulation of Qudit Channels, New J. Phys.
17, 043004 (2015).

[95] C. Shen et al., Quantum Channel Construction with
Circuit Quantum Electrodynamics (to be published).

[96] R. Azouit, A. Sarlette, and P. Rouchon, Adiabatic Elimi-
nation for Open Quantum Systems with Effective Lindblad
Master Equations, arXiv:1603.04630.

[97] J. Anandan and Y. Aharonov, Geometric Quantum Phase
and Angles, Phys. Rev. D 38, 1863 (1988).

[98] A. Beige, D. Braun, B. Tregenna, and P. L. Knight,
Quantum Computing Using Dissipation to Remain in a
Decoherence-Free Subspace, Phys. Rev. Lett. 85, 1762
(2000).

[99] W. K. Abou Salem, On the Quasi-Static Evolution of
Nonequilibrium Steady States, Ann. Inst. Henri Poincaré
8, 569 (2007).

[100] A. Joye, General Adiabatic Evolution with a Gap Con-
dition, Commun. Math. Phys. 275, 139 (2007).

[101] J. Schmid, Adiabatic Theorems With and Without Spectral
Gap Condition for Non-Semisimple Spectral Values,
arXiv:1401.0089.

[102] L. Campos Venuti, T. Albash, D. A. Lidar, and P. Zanardi,
Adiabaticity in Open Quantum Systems, Phys. Rev. A 93,
032118 (2016).

[103] E. B. Davies and H. Spohn, Open Quantum Systems with
Time-Dependent Hamiltonians and Their Linear Re-
sponse, J. Stat. Phys. 19, 511 (1978).

[104] P. Thunstrom, J. Aberg, and E. Sjoqvist, Adiabatic
Approximation for Weakly Open Systems, Phys. Rev. A
72, 022328 (2005).

[105] J. P. Pekola, V. Brosco, M. Möttönen, P. Solinas, and A.
Shnirman, Decoherence in Adiabatic Quantum Evolution:
Application to Cooper Pair Pumping, Phys. Rev. Lett. 105,
030401 (2010).

[106] J. Anandan and Y. Aharonov, Geometry of Quantum
Evolution, Phys. Rev. Lett. 65, 1697 (1990).

[107] T. Neupert, C. Chamon, and C. Mudry, Measuring the
Quantum Geometry of Bloch Bands with Current Noise,
Phys. Rev. B 87, 245103 (2013).

[108] J. E. Avron and R. Seiler, Quantization of the Hall
Conductance for General, Multiparticle Schrödinger
Hamiltonians, Phys. Rev. Lett. 54, 259 (1985).

[109] D. Xiao, M.-C. Chang, and Q. Niu, Berry Phase Effects
on Electronic Properties, Rev.Mod. Phys. 82, 1959 (2010).

[110] N. Read and E. H. Rezayi, Hall Viscosity, Orbital Spin,
and Geometry: Paired Superfluids and Quantum Hall
Systems, Phys. Rev. B 84, 085316 (2011).

[111] J. E. Avron, M. Fraas, G. M. Graf, and O. Kenneth,
Quantum Response of Dephasing Open Systems, New J.
Phys. 13, 053042 (2011).

[112] V. Gritsev and A. Polkovnikov, Dynamical Quantum Hall
Effect in the Parameter Space, Proc. Natl. Acad. Sci.
U.S.A. 109, 6457 (2012).

[113] B. Bradlyn,M. Goldstein, and N. Read,Kubo Formulas for
Viscosity: Hall Viscosity, Ward Identities, and the Relation
with Conductivity, Phys. Rev. B 86, 245309 (2012).

[114] L. Campos Venuti and P. Zanardi, Quantum Critical
Scaling of the Geometric Tensors, Phys. Rev. Lett. 99,
095701 (2007).

[115] P. Zanardi, P. Giorda, and M. Cozzini, Information-
Theoretic Differential Geometry of Quantum Phase Tran-
sitions, Phys. Rev. Lett. 99, 100603 (2007).

[116] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classi-
fying and Measuring Geometry of a Quantum Ground
State Manifold, Phys. Rev. B 88, 064304 (2013).

[117] R. Roy, Band Geometry of Fractional Topological Insula-
tors, Phys. Rev. B 90, 165139 (2014).

[118] E. Dobardžić, M. V. Milovanović, and N. Regnault, Geo-
metrical Description of Fractional Chern Insulators Based
on Static Structure Factor Calculations, Phys. Rev. B 88,
115117 (2013).

[119] T. S. Jackson, G. Möller, and R. Roy, Geometric Stability
of Topological Lattice Phases, Nat. Commun. 6, 8629
(2015).

[120] D. Bauer, T. S. Jackson, and R. Roy, Quantum Geometry
and Stability of the Fractional Quantum Hall Effect
in the Hofstadter Model, Phys. Rev. B 93, 235133
(2016).

[121] L. Banchi, P. Giorda, and P. Zanardi,Quantum Information-
Geometry ofDissipativeQuantumPhase Transitions, Phys.
Rev. E 89, 022102 (2014).

[122] U. Marzolino and T. Prosen, Quantum Metrology with
Nonequilibrium Steady States of Quantum Spin Chains,
Phys. Rev. A 90, 062130 (2014).

[123] J. H. Wei and Y. Yan, Linear Response Theory for
Quantum Open Systems, arXiv:1108.5955.

[124] H. Z. Shen, W. Wang, and X. X. Yi, Hall Conductance and
Topological Invariant for Open Systems, Sci. Rep. 4, 6455
(2014).

[125] M. Ban, Linear Response Theory for Open Quantum
Systems within the Framework of the ABL Formalism,
Quantum Stud. Math. Found. 2, 51 (2015).

[126] R. Chetrite and K. Mallick, Quantum Fluctuation Rela-
tions for the Lindblad Master Equation, J. Stat. Phys. 148,
480 (2012).

[127] L. Campos Venuti and P. Zanardi, Dynamical Response
Theory for Driven-Dissipative Quantum Systems, Phys.
Rev. A 93, 032101 (2016).

[128] J. E. Gough, T. S. Ratiu, and O. G. Smolyanov, Noether’s
Theorem for Dissipative Quantum Dynamical Semi-
Groups, J. Math. Phys. (N.Y.) 56, 022108 (2015).

[129] S. Mukamel, Principles of Nonlinear Optical Spectroscopy
(Oxford University Press, New York, 1995).

[130] B. M. Villegas-Martínez, F. Soto-Eguibar, and H.M.
Moya-Cessa, Application of Perturbation Theory to
a Master Equation, Adv. Math. Phys. 2016, 9265039
(2016).

[131] I. A. Dmitriev, A. D.Mirlin, andD. G. Polyakov,Cyclotron-
Resonance Harmonics in the ac Response of a 2D Electron
Gas with Smooth Disorder, Phys. Rev. Lett. 91, 226802
(2003).

[132] N. Schine, A. Ryou, A. Gromov, A. Sommer, and J.
Simon, Synthetic Landau Levels for Photons, Nature 534,
671 (2016).

[133] There can be, in general, a set of exactly degenerate
ground states. However, for fractional quantum Hall
systems, these states cannot be connected by local
operators, and, hence, they do not play a role in our
linear response calculation.

ALBERT, BRADLYN, FRAAS, and JIANG PHYS. REV. X 6, 041031 (2016)

041031-34



[134] W. Kohn, Cyclotron Resonance and de Haas–van Alphen
Oscillations of an Interacting Electron Gas, Phys. Rev.
123, 1242 (1961).

[135] Z. Cai and T. Barthel, Algebraic versus Exponential
Decoherence in Dissipative Many-Particle Systems, Phys.
Rev. Lett. 111, 150403 (2013).

[136] M. Žnidarič, Relaxation Times of Dissipative Many-
Body Quantum Systems, Phys. Rev. E 92, 042143
(2015).

[137] P. Zanardi, J. Marshall, and L. Campos Venuti, Dissipative
Universal Lindbladian Simulation, Phys. Rev. A 93,
022312 (2016).

[138] R. I. Karasik, K.-P. Marzlin, B. C. Sanders, and K. B.
Whaley, Criteria for Dynamically Stable Decoherence-
Free Subspaces and Incoherently Generated Coherences,
Phys. Rev. A 77, 052301 (2008).

[139] E. Hach III and C. Gerry, Generation of Mixtures of
Schrödinger-Cat States from a Competitive Two-Photon
Process, Phys. Rev. A 49, 490 (1994).

[140] R. Azouit, A. Sarlette, and P. Rouchon, Convergence and
Adiabatic Elimination for a Driven Dissipative Quantum
Harmonic Oscillator, in 54th IEEE Conference on Deci-
sion and Control (CDC), Osaka, 2015 (IEEE, New York,
2015).

[141] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, Optimal
Time Schedule for Adiabatic Evolution, Phys. Rev. A 82,
040304 (2010).

[142] For open paths, B is related to noncyclic geometric phases
in other dissipative systems [see, e.g., Ref. [143], Eq. (47)]
and non-Hermitian systems [144].

[143] N. A. Sinitsyn, The Stochastic Pump Effect and Geometric
Phases in Dissipative and Stochastic Systems, J. Phys. A
42, 193001 (2009).

[144] D. Viennot, A. Leclerc, G. Jolicard, and J. P. Killingbeck,
Consistency between Adiabatic and Non-Adiabatic Geo-
metric Phases for Non-Self-Adjoint Hamiltonians, J. Phys.
A 45, 335301 (2012).

[145] If M is not simply connected (i.e., has holes), then the
Berry phase may contain “topological” contributions. Such
effects are responsible for anyonic statistics (see, e.g.,
Ref. [146], Sec. I.B) and can produce Berry phases even
for a one-dimensional parameter space [147].

[146] N. Read, Non-Abelian Adiabatic Statistics and Hall
Viscosity in Quantum Hall States and px þ ipy Paired
Superfluids, Phys. Rev. B 79, 045308 (2009).

[147] J. Zak, Berry’s Phase for Energy Bands in Solids, Phys.
Rev. Lett. 62, 2747 (1989).

[148] M. Nakahara, Geometry, Topology, and Physics, 2nd ed.
(IOP Publishing, Bristol, England, 2003).

[149] I. Y. Aref’eva, Non-Abelian Stokes Formula, Theor. Math.
Phys. 43, 353 (1980).

[150] A. I. Nesterov, Non-Hermitian Quantum Systems and
Time-Optimal Quantum Evolution, SIGMA 5, 69
(2009).

[151] D. C. Brody and E.-M. Graefe, Information Geometry of
Complex Hamiltonians and Exceptional Points, Entropy
15, 3361 (2013).

[152] D. C. Brody, Biorthogonal Quantum Mechanics, J. Phys.
A 47, 035305 (2014).

[153] F. Reiter and A. S. Sorensen, Effective Operator Formal-
ism for Open Quantum Systems, Phys. Rev. A 85, 032111
(2012).

[154] A. C. Y. Li, F. Petruccione, and J. Koch, Resummation
for Nonequilibrium Perturbation Theory and Applica-
tion to Open Quantum Lattices, Phys. Rev. X 6, 021037
(2016).

[155] A. C. Y. Li, F. Petruccione, and J. Koch, Perturbative
Approach to Markovian Open Quantum Systems, Sci. Rep.
4, 4887 (2014).

[156] K. Macieszczak, M. Guta, I. Lesanovsky, and J. P.
Garrahan, Towards a Theory of Metastability in Open
Quantum Dynamics, Phys. Rev. Lett. 116, 240404 (2016).

[157] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F.
Huelga, Quantum Speed Limits in Open System Dynamics,
Phys. Rev. Lett. 110, 050403 (2013).

[158] P. Rouchon and A. Sarlette, in Proceedings of the
52nd IEEE Conference on Decision and Control (IEEE,
New York, 2013), pp. 6568–6573.

[159] J. Jing, L.-A. Wu, and A. del Campo, Fundamental Speed
Limits to theGenerationofQuantumness, arXiv:1510.01106.

[160] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and
D. O. Soares-Pinto, Generalized Geometric Quantum
Speed Limits, Phys. Rev. X 6, 021031 (2016).

[161] O. Viyuela, A. Rivas, and M. A. Martin-Delgado,
Uhlmann Phase as a Topological Measure for One-
Dimensional Fermion Systems, Phys. Rev. Lett. 112,
130401 (2014).

[162] A. Rivas, O. Viyuela, and M. A. Martin-Delgado, Density-
Matrix Chern Insulators: Finite-Temperature Generaliza-
tion of Topological Insulators, Phys. Rev. B 88, 155141
(2013).

[163] J. C. Budich and B. Trauzettel, From the Adiabatic
Theorem of Quantum Mechanics to Topological States
of Matter, Phys. Status Solidi RRL 7, 109 (2013).

[164] Z. Huang and D. P. Arovas, Topological Indices for Open
and Thermal Systems via Uhlmann’s Phase, Phys. Rev.
Lett. 113, 076407 (2014).

[165] H. Wilming, M. J. Kastoryano, A. H. Werner, and J. Eisert,
Emergence of Spontaneous Symmetry Breaking in
Dissipative Lattice Systems, arXiv:1602.01108.

[166] F. Ticozzi, R. Lucchese, P. Cappellaro, and L. Viola,
Hamiltonian Control of Quantum Dynamical Semigroups:
Stabilization and Convergence Speed, IEEE Trans.
Autom. Control 57, 1931 (2012).

[167] S. Ying, Y. Feng, N. Yu, and M. Ying, Reachability
Probabilities of Quantum Markov Chains, Lect. Notes
Comput. Sci. 8052, 334 (2013).

[168] A. Dhahri, F. Fagnola, and R. Rebolledo, The
Decoherence-Free Subalgebra of a Quantum Markov
Semigroup with Unbounded Generator, Inf. Dim. Anal.
Quant. Prob. Rel. Topics 13, 413 (2010).

[169] S. Alipour, D. Chruscinski, P. Facchi, G. Marmo, S.
Pascazio, and A. T. Rezakhani, Dynamically Contracted
Algebra of Observables for Dissipative Quantum Systems,
arXiv:1511.08132.

[170] H. M. Wiseman and G. J. Milburn, Quantum Measurement
and Control (Cambridge University Press, Cambridge,
England, 2009).

GEOMETRY AND RESPONSE OF LINDBLADIANS PHYS. REV. X 6, 041031 (2016)

041031-35



[171] T. Benoist, C. Pellegrini, and F. Ticozzi, Exponential
Stability of Subspaces for Quantum Stochastic Master
Equations, arXiv:1512.00732.

[172] J. E. Tyson, Operator-Schmidt Decompositions and the
Fourier Transform, with Applications to the Operator-
Schmidt Numbers of Unitaries, J. Phys. A 36, 10101
(2003).

[173] M. Zwolak and G. Vidal, Mixed-State Dynamics in One-
Dimensional Quantum Lattice Systems: A Time-Dependent
Superoperator Renormalization Algorithm, Phys. Rev.
Lett. 93, 207205 (2004).

[174] I. Bengtsson and K. Zyczkowski, Geometry of Quantum
States: An Introduction to Quantum Entanglement
(Cambridge University Press, Cambridge, England, 2006).

[175] Á. Rivas, A. D. K. Plato, S. F. Huelga, and M. B. Plenio,
Markovian Master Equations: A Critical Study, New J.
Phys. 12, 113032 (2010).

[176] C. Gardiner and P. Zoller, Quantum Noise (Springer,
Berlin, 2000).

[177] S. G. Schirmer and X. Wang, Stabilizing Open Quantum
Systems by Markovian Reservoir Engineering, Phys. Rev.
A 81, 062306 (2010).

[178] K. Alicki and R. Lendi, Quantum Dynamical Semigroups
and Applications (Springer-Verlag, Berlin, 2007).

[179] M. S. Sarandy and D. A. Lidar, Adiabatic Approximation
in Open Quantum Systems, Phys. Rev. A 71, 012331
(2005).

[180] J. Ortigoso, Quantum Adiabatic Theorem in Light of the
Marzlin-Sanders Inconsistency, Phys. Rev. A 86, 032121
(2012).

[181] T. Kato, On the Adiabatic Theorem of Quantum Mechan-
ics, J. Phys. Soc. Jpn. 5, 435 (1950).

[182] S. I. Vinitskii, V. L. Derbov, V. M. Dubovik, B. L.
Markovski, and Y. P. Stepanovskii, Topological Phases
in Quantum Mechanics and Polarization Optics, Sov.
Phys. Usp. 33, 403 (1990).

[183] S. Pancharatnam, Generalized Theory of Interference,
and Its Applications, Proc. Indian Acad. Sci. A 44, 247
(1956).

[184] M. V. Berry, Quantal Phase Factors Accompanying
Adiabatic Changes, Proc. R. Soc. A 392, 45 (1984).

[185] Y. Aharonov and J. Anandan,Phase Change during a Cyclic
Quantum Evolution, Phys. Rev. Lett. 58, 1593 (1987).

[186] F. Wilczek and A. Zee, Appearance of Gauge Structure in
Simple Dynamical Systems, Phys. Rev. Lett. 52, 2111
(1984).

[187] D. Chruscinski and A. Jamiolkowski, Geometric Phases in
Classical and Quantum Physics (Birkhauser, Boston,
2004).

[188] J. E. Avron, in Mesoscopic Quantum Physics, Proceedings
of Les Houches Summer School, Session LXI, edited by
E. Akkermans, G. Montambaux, J. Pichard, and J.
Zinn-Justin, (Elsevier, Amsterdam, 1995).

[189] B. Simon, Holonomy, the Quantum Adiabatic Theorem,
and Berry’s Phase, Phys. Rev. Lett. 51, 2167 (1983).

[190] J. E. Avron, L. Sadun, J. Segert, and B. Simon, Chern
Numbers, Quaternions, and Berry’s Phases in Fermi
Systems, Commun. Math. Phys. 124, 595 (1989).

[191] M. Kolodrubetz, P. Mehta, and A. Polkovnikov, Geometry
and Non-Adiabatic Response in Quantum and Classical
Systems, arXiv:1602.01062.

[192] A. T. Rezakhani, D. F. Abasto, D. A. Lidar, and P. Zanardi,
Intrinsic Geometry of Quantum Adiabatic Evolution and
Quantum Phase Transitions, Phys. Rev. A 82, 012321
(2010).

[193] Y.-Q. Ma, S. Chen, H. Fan, and W.-M. Liu, Abelian and
Non-Abelian Quantum Geometric Tensor, Phys. Rev. B
81, 245129 (2010).

[194] A. Mostafazadeh, Quantum Brachistochrone Problem and
the Geometry of the State Space in Pseudo-Hermitian
Quantum Mechanics, Phys. Rev. Lett. 99, 130502 (2007).

[195] A. Mostafazadeh, Hamiltonians Generating Optimal-
Speed Evolutions, Phys. Rev. A 79, 014101 (2009).

[196] S. Jansen, M.-B. Ruskai, and R. Seiler, Bounds for the
Adiabatic Approximation with Applications to Quantum
Computation, J. Math. Phys. (N.Y.) 48, 102111 (2007).

[197] M. Demirplak and S. A. Rice, Adiabatic Population
Transfer with Control Fields, J. Phys. Chem. A 107,
9937 (2003).

[198] R. Lim and M. V. Berry, Superadiabatic Tracking of
Quantum Evolution, J. Phys. A 24, 3255 (1991).

[199] G. Vacanti, R. Fazio, S. Montangero, G. M. Palma, M.
Paternostro, and V. Vedral, Transitionless Quantum
Driving in Open Quantum Systems, New J. Phys. 16,
053017 (2014).

[200] M. V. Berry, Transitionless Quantum Driving, J. Phys. A
42, 365303 (2009).

[201] E. Torrontegui, S. Ibáñez, S.Martínez-Garaot,M.Modugno,
A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen,
and J. G. Muga, Advances In Atomic, Molecular, and
Optical Physics (Elsevier, New York, 2013), Vol. 62,
Chap. 2, pp. 117–169.

ALBERT, BRADLYN, FRAAS, and JIANG PHYS. REV. X 6, 041031 (2016)

041031-36


