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We investigate the sensitivity of a recently proposed method for precision measurement [Phys. Rev. Lett.
106, 140502 (2011)], focusing on an implementation based on solid-state spin systems. The scheme amplifies a
quantum sensor response to weak external fields by exploiting its coupling to spin impurities in the environment.
We analyze the limits to the sensitivity due to decoherence and propose dynamical decoupling schemes to
increase the spin coherence time. The sensitivity is also limited by the environment spin polarization; therefore,
we discuss strategies to polarize the environment spins and present a method to extend the scheme to the case of
zero polarization. The coherence time and polarization determine a figure of merit for the environment’s ability
to enhance the sensitivity compared to echo-based sensing schemes. This figure of merit can be used to engineer
optimized samples for high-sensitivity nanoscale magnetic sensing, such as diamond nanocrystals with controlled
impurity density.

DOI: 10.1103/PhysRevA.85.032336 PACS number(s): 03.67.Ac, 03.65.Ta, 06.20.−f, 81.05.ug

I. INTRODUCTION

Quantum metrology seeks to achieve precision measure-
ments with an accuracy beyond the limits imposed by the
central limit theorem [1] [the standard quantum limit (SQL)].
Although many proposals for achieving the quantum limits of
sensitivity (as defined by the Heisenberg bounds) have been
presented, they are often difficult to implement in practice. The
main challenges arise from the deleterious effects of noise and
decoherence on the (entangled) states required for quantum
metrology and from the unavailability of the Hamiltonians
and measurement strategies needed to create and readout these
entangled states.
We recently introduced a scheme [2] that aims at overcom-

ing these two challenges. We proposed to use the environment
of the sensor as an additional resource for metrology and we
showed how to achieve the desired interaction Hamiltonian
using coherent control techniques. In this paper we focus
on one possible implementation of this environment-assisted
metrology (EAM) scheme—a spin sensor embedded in a bath
of other spins—in order to derive more detailed results on the
sensitivity achievable. In addition, we analyze in depth the
effects of decoherence and of finite polarization.
The paper is organized as follows. In Sec. II we present the

EAM scheme: the control sequence that achieves it and the
sensitivity gain in the idealized situation of no decoherence.
This restriction is lifted in Sec. III, where we analyze the
effects of decoherence, both analytically and with numerical
simulations. We further provide strategies to reduce the effects
of decoherence. In Sec. IV we use these results to derive
limits of the proposed EAM strategy and compare them to
usual strategies that do not take advantage of the environment.
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Since the sensitivity depends on the polarization of the spin
environment, we propose in Sec. V schemes for polarizing
these ancillary spins andwe further extend the EAM scheme to
the case where no polarization is available. A second extension
of the EAM method is presented in Sec. VI, where more
general spin systems are studied.

II. THE ENVIRONMENT-ASSISTED
METROLOGY SCHEME

We consider the metrology task of measuring a parameter
b via its interaction with a quantum probe. The task can be
accomplished by using a Ramsey scheme, where a two-level
system is first prepared in a superposition of the two states,
which then acquire a phase difference that is mapped onto the
populations by a second pulse. An example of this scheme
is magnetometry with solid-state spins [3], where the probe
interacts with the external magnetic field via a Hamiltonian
H ∝ bSz, acquiring a phase ∝bt during the interrogation time
t . Then the bound to the sensitivity is set by the dephasing rate
that limits the time the probe can interact with the external
field associated with the parameter to be measured.
Coherent control techniques can be used to isolate the probe

from its environment, thus increasing the coherence time. If
the environment interacts as well with the external field to be
measured—as is the case for a spin bath—a different strategy
is possible: In Ref. [2] we showed that in this case the spin
environment can be used as a resource by mapping the phase
acquired by the environment spins onto the probe spin before
readout. Here we provide more details of the method presented
in Ref. [2] and consider several extensions of the work. To this
end we assume that the spin environment can be collectively
controlled and partially polarized. These spins could thus be
considered as an ancillary system. Still, since they cannot
be addressed individually nor read out, they cannot be used
directly as probes or in sequential adaptive schemes [4–6]. In
addition, because their couplings to the probe spin cannot
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FIG. 1. (a) Ideal circuit for EAM with ancillary qubits, based on
a DQC1 scheme. (b) More realistic circuit, where the interaction with
the field to be measured is not conditional on the probe spin. The
controlled-Ix gates denote CNOT gates in the ideal model and are
reduced to more general rotations (with different angles for different
spins) in the realistic scheme.

be switched off, they are a cause of decoherence for the
probe spin (as we see in Sec. III) and thus they can be
considered as environment. Nevertheless we show that one can
make active use of these spins to increase the sensitivity of a
measurement.
Ancillary qubits have been considered as a resource for

parameter estimation [7] in a scheme inspired by the deter-
ministic quantum computing with only one pure qubit (DQC1)
model [8]. In that scheme, the probe qubit is initially prepared
in a superposition state, then the ancillary system interacts with
the external parameter conditional on the state of the probe,
which is finally read out [see Fig. 1(a)]. When the conditional
evolution is given by the operator U = e−ibt

∑
k I k

z (where �I k

are the ancilla spin operators) the sensitivity achieves the
SQL (scaling as 1/

√
n where n is the number of ancillary

qubits) for ancillas in a completely mixed state [7] and the
Heisenberg limit for pure state (scaling as 1/n). In that case,
it is convenient to read out the y component of the probe
spin, which gives a signal S = sin(nbt). Since the signal
is enhanced by a factor of n for small fields nbt � 1 this
yields a Heisenberg-limited sensitivity scaling as 1/n. Indeed,
for pure input states, the circuit creates an entangled state
that provides a signal enhancement. Below we modify this
scheme so that it can be implemented for realistic physical
systems.
In general, the ancillas dependence on the external pa-

rameter cannot be controlled by the probe spin, as it is
implicitly assumed above. Thus, it is necessary to intersperse
the evolution under the interaction with the external field with
controlled-NOT (CNOT) gates [Fig. 1(b)].With thismodification
we achieve a similar evolution as before. However, even this
simpler scheme cannot be easily implemented and is not
compatible with our assumptions of limited control on the
environment spins: If the ancillas are spins in the environment,
it is not possible to control them individually; thus, the CNOT
gates cannot be implemented since the required interaction
time for the CNOT operations will be different for the different
spins. The key to using the environment spins—with the
corresponding limited control—as a resource for parameter
estimation is to realize that the scheme works also if the
controlled gates are not ideal π rotations. The rotations can
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FIG. 2. (Color online) EAM pulse sequence. The vertical bars
represent microwave pulses on resonance with the probe (top part
of the figure) or environment spins (middle), performing the labeled
rotations. We assume that the field to be measured is an ac field
synchronized with the pulse sequence as shown in the bottom of the
figure.

differ for different spins, as long as the state of the probe
spin is flipped (NOT gate) before the second set of controlled
gates: This ensures that all the environment spins contribute
constructively to the final phase, as we derive below.
We note that the spin flip of the probe achieves two other

results: First, it makes the evolution insensitive to static noise
(as produced, for example, by a very slowly varying spin bath)
since the gate amount to a spin echo for the probe spin. Second,
the echo pulse refocuses the entanglement created in the first
half of the circuit; this operation cancels undesired terms in
the signal that would arise when considering a more realistic
scenario where both the external field and the couplings to
the probe spin used to create controlled rotations are always
present at the same time.
The idealized scheme in Fig. 1 can be implemented in

practice with realistic resources, with the EAMpulse sequence
of Fig. 2. We consider a system comprising a sensor spin
(S = 1) and environment spins (I k), which in a convenient
rotating frame on resonance with the ms = 0 → 1 transition
is described by the Hamiltonian:

H = b(t)

(
γSSz + γI

∑
k

I k
z

)
+

∑
λkSzI

k
z

= |0〉〈0|
[
b(t)γI

∑
k

I k
z

]

+ |1〉〈1|
[
γSb(t)+

∑
k

(γIb(t)+ λk)I
k
z

]
, (1)

where b(t) is the external field to be measured, γS,I are
the gyromagnetic ratios of the probe and environment spins,
respectively, λk are the dipole couplings between the sensor
and environment spins, and |0〉 (|1〉) denotes the ms = 0
(ms = 1) eigenstate of the Sz operator.
We choose a spin-1 system for its analogy with nitrogen-

vacancy (NV) centers in diamond [9,10] as they have emerged
as good quantum probes of magnetic fields [3,11,12] for their
controllability, optical readout and long coherence times. In
addition nitrogen paramagnetic impurities (P1 centers [13])
can act as the environment spins, since they can be collectively
controlled [14]. The choice of a spin-1 system is also important
since the presence of an eigenstate with zero eigenvalue
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effectively allows shutting off the interaction between the
probe spin and the environment spins at given times: This
flexibility makes the EAM scheme easier to implement. We
lift this restriction and examine a more general case in Sec. VI.
In the sequence in Fig. 2 the probe spin undergoes a

spin-echo sequence induced by pulses on resonance with the
transition between the states |0〉 and |1〉 before beingmeasured.
For any given evolution of the environment, the signal can then
be calculated from S(t) = [1+ S(t)]/2, with [15,16]:

S(t) = Im[Tr{U0U1ρenvU †
0U

†
1 }]. (2)

Here the propagators Ui = e−iHi t are defined as the evolution
of the environment spins in the ms = i manifold, where
H0 = b(t)γI

∑
k I k

z and H1 = γSb(t)+
∑

k[γIb(t)+ λk]I k
z

[see Eq. (1)]. The pulsed evolution of the environment, giving
the propagators Ui , can be most easily calculated in the
toggling frame [17], the interaction frame defined by the
control pulses. In this frame, the Hamiltonian (1) becomes
piecewise time-dependent, with operators alternating between
the z and x axes.
The evolution for the sequence of Fig. 2 and the resulting

signal Eq. (2) can be calculated exactly in the case of a single
ancilla. Here we present only the result for many ancillas in
the limit of small field b, following the derivation of Ref. [2].
We neglect for the moment the coupling of the sensor spin to
the magnetic field and only keep first-order terms in the field.
By expanding the exponentials, the only terms contributing to
the signal are then

Im

[
Tr

{
e−iτ/4

∑
k λkI

k
x e−iτ/4

∑
k λkI

k
z ρenve

iτ/4
∑

k λkI
k
z

× eiτ/4
∑

k λkI
k
x

(
−iB2τ

∑
I k
z

)}]

= −B2τ
∑

k

cos(λτ/4)

and

Im

[
Tr

{
e−iτ/4

∑
k λkI

k
x e−iτ/4

∑
k λkI

k
z

(
iB2τ

∑
I k
z

)
ρenv

× eiτ/4
∑

k λkI
k
z eiτ/4

∑
k λkI

k
x

}]
= B2τ,

where B2 = − 1
τ

∫ 3τ
4

τ
2

b (t) dt .

The signal is then given by S = 1
2 [1− sin(�)], with

� = γSB1

[
1+ 2P γIB2

γSB1

∑
k

sin

(
λkτ

8

)2]
, (3)

whereB1 = 1
τ
(
∫ τ

2
0 b(t)dt − ∫ τ

τ
2
b(t)dt) is the contribution from

the direct coupling of the sensor with the field and we have
introduced the polarization P � 1 of the environment spins,
so that the initial state of each spin in the environment is
ρk = 1/2+ PIk

z . The factor in the square bracket is the am-
plification attained as compared to magnetometry performed
via a spin echo [3]. We can always get an amplification, as
sin( λkτ

8 )
2 is non-negative and changing the pulse phases always

ensures that γIB2 and γSB1 have the same sign.

For values of the couplings such that |λkτ | � 2π , or
strongly coupled environment spins, the terms sin( λkτ

8 )
2

average to 1
2 . Weakly coupled environment spins (λk � 1)

contribute instead with a factor ∝λ2k and we obtain a total
phase

� = γSB1τ

{
1+ P

γIB2

γSB1

[
nsc + 2

′∑
(λkτ/8)2

]}
, (4)

where nsc is the number of strongly coupled spins and the
primed sum runs only over the weakly coupled spins (this
last term can generally be neglected compared to the strongly
coupled spin contribution).
The sensitivity of the EAM scheme is easily calculated by

noting that ideally the only noise contribution is the shot noise
of the spin probe. For γS = γI ≡ γ and assuming an oscillating
field in phasewith the echo sequence b(t) = b0 sin(2πt/τ ), the
sensitivity [19,20] per unit time η = 	S

‖ ∂S
∂b0

‖
√

T is

η = π

Cγ
(
2+ 1

2Pnsc

)√
τ

, (5)

wherewe introduced the factorC [3] to include any nonideality
of the measurement procedure (here we assumed T = Nτ ,
with N the number of repetitions of the measurement).
The sensitivity scales as 1/nsc achieving a Heisenberg-like
scaling.1

We note that even in this ideal case, there are two factors that
reduce the sensitivity: a limited polarization of the environment
spins and the reduction of the time duringwhich the interaction
with the external field is effective (because of the scheme
proposed, a phase is acquired which is proportional to only
1/4th of the total sequence time).
The EAM scheme thus demonstrates that it is possible to

attain nearly Heisenberg limited sensitivity for metrology with
a new class of entangled states (other than squeezed or GHZ
states) that, as we see in the following, are more robust to
decoherence. Furthermore, these states can be created with
limited control resources, thus opening the possibility of using
spins in the environment as a resource for metrology.

III. DECOHERENCE

The results in the previous section did not take into account
the effects of decoherence caused both by the environment
spins used as an ancillary system and by any other residual
bath. In this section we take these effects into account and
show that even in the nonideal case the EAM sequence can
provide a sensitivity enhancement with respect to other control
scenarios (such as a spin echo) that only aim at refocusing the
interaction of the probe spin with the environment spins.

A. Decoherence induced by the environment spins couplings

The interactions among environment spins hamper the
EAM scheme in two ways. First, flip-flops of environment
spins lead to a loss of coherence of the probe spin. This effect is

1Equation (5) is valid only for P �= 0. We analyze the case P = 0
in Sec. V.
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the same that is observed during a spin echo, and we show that
the resulting coherence time T2 is on the same order for the two
sequences. Second, the interactions also cause the environment
spins to lose their internal phase coherence, resulting in a
smaller accumulated phase �. Still, this effect happens on
a time scale τI given by the environment spin correlation
time, which is usually longer than the probe coherence time,
τI � T2. Thus, the sensitivity is ultimately limited by T2, as in
the spin-echo case.
Consider the system evolution as given by Eq. (2) (for

simplicity in the absence of the magnetic field b). Now the
propagators are given by the Hamiltonian

H = b(t)

(
γSSz + γI

∑
I k
z

)
+

∑
λkSzI

k
z

+
∑

κjk

(
3I j

z I k
z − �I j · �I k

)
, (6)

where κij are the intrabath couplings given by the magnetic
dipole interaction among spins. Because of the presence of the
couplings, the evolution in the two halves of the sequence is
no longer the same; thus, the interaction between the probe
spin and the environment spins can no longer be perfectly
refocused. This effect, usually called spectral diffusion, is
observed as well in spin-echo experiments and leads to the
coherence time T2. The addition of a modulation of the
environment spins is not expected to change substantially
the coherence time, as hinted by the short time evolution
expansion presented in Ref. [2]. An exception is for a perfectly
polarized bath: In that case, flip-flops are quenched in the spin
echo, but they are still allowed in the EAM scheme since they
are enabled by the rotation of the spins during the protocol;
the effect of flip-flop quenching is, however, noticeable only
for very high polarization of the bath [21,22].
From this argument we expect that one can have a

similar interrogation time τ in Eq. (5) for the EAM scheme
considered here as for a simple spin-echo sequence. Unlike
for different entangled states [23], the enhancement from
entanglement is therefore not counterbalanced by a decrease
in the interrogation time τ , and the EAM scheme does allow
for a significant improvement of the sensitivity.

We further verify this claim by simulations. We used the
disjoint cluster approximation [18] to simulate the sequence
in Fig. 2 for a system comprising the probe spin surrounded
by an environment of 25–50 spins randomly positioned in
a cube with sides of unit length. By averaging over many
spatial distributions of the environment spins, the simulation
converges quickly even for small cluster sizes and it gives
information about the average coherence time [24,25].
The system we consider is inspired by a NV center in

a nanocrystal of diamond in the presence of P1 nitrogen
impurities [2], but the results are more generally valid. For
comparison, we also simulated the evolution under a spin-echo
sequence. From the results in Fig. 3 we see that the coherence
time is not qualitatively different for the two sequences. The
figure shows in addition that the coherence time depends on
the density of the environment spins, a fact that is important in
evaluating the sensitivity achievable with the EAM scheme.
The second effect of the intrabath couplings is to make the

environment spins themselves lose their coherence in a time
on the order of their correlation time τI , which is given by
the rate of spin flip-flop driven by the dipolar interaction. If
the environment spins are no longer in a coherent state, the
phase they acquire does not add up constructively, resulting
in a smaller phase �. Still, this effect is comparable to the
previous one, since the correlation time is at least on the same
order of T2.
In addition to the environment spins that are used as

ancillary sensors, the system could be in contact with an
additional spin bath. For example, in the case of the NV center
in diamond this bath is given by the 13C nuclear spins. The
effects of this quasistatic bath are refocused by the π pulse on
the NV center and by the two π/2 pulses on the environment
spins, which amount to a so-called “Hahn echo” [26] sequence.
Any residual decay is again comparable to what is observed in
a simple spin echo for the probe spin.

B. Dynamical decoupling

An increase in the effective correlation time of the environ-
ment spins would be beneficial in twoways, by both increasing
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FIG. 3. (Color online) (Left) Simulations of signal decay for spin-echo sequence (red dotted and dash-dotted lines) and EAM sequence
(black dashed and solid lines). (Right) Simulations of the two sequences with a WAHUHA sequence embedded in each time period (for 1 to
50 cycles). The time was normalized by the largest sensor-environment spin coupling, τ ∼ [π/λmax]. The dotted and dashed lines correspond
to a 6% spin density and the dash-dotted and solid lines to a density ≈1/8. In the first case about 25 environment spins were placed around
the probe spin on a diamond lattice, while in the second case, about 50 spins were simulated. The polarization of each environment spin was
P = 1

2 . We took an average of 100 spin distributions to obtain mean decay values and performed each simulation using the disjoint cluster
method [18], with clusters of 6 spins.
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with the “direction” of the Hamiltonian in the toggling frame.

the coherence time of the probe spin, through its influence
on the sensor spin T2 time, and directly by improving the
environment spin coherence. Dynamical decoupling schemes
could achieve this goal. The dipolar Hamiltonian can be
refocused using homonuclear decoupling sequences such as
the WAHUHA sequence [27]. The pulse modulation gives
a time-dependent Hamiltonian for the spin-spin interaction
that averages to zero over a cycle time tc. If the modulation
is fast compared to the couplings, the effective Hamiltonian
over the cycle is well approximated by its average. A simple
symmetrization of the pulse sequence [28] can further cancel
out the first-order correction, leaving errors that are only
quadratic in the product κtc (and do not depend on the total
evolution time, which could be given by many cycles) [17].
Figure 4 shows how to incorporate a WAHUHA sequence

within the EAM sequence. We modified the phases of the
pulses with respect to the original sequence in order to obtain
an effective coupling between the probe and environment spins
∝ 1√

3
Sz

∑
λkI

k
z(x) in the odd (even) time intervals. These phase

changes do not affect the average of the dipolar Hamiltonian
and hence the performance of the WAHUHA sequence.
Unfortunately, the modulation does not only average out the
dipolar Hamiltonian, but it also reduces the linear terms by a
factor 1/

√
3. In many cases, the increase in coherence time

more than compensate for this weighting factor. In Fig. 3
we simulated via the disjoint cluster method the coherence
of the EAM and spin-echo sequences, while applying the
WAHUHA sequence in between the pulses. Comparing the
results obtained in the absence of dynamical decoupling,
we see that the sequence is very effective in increasing the
coherence time.
A different strategy for directly increasing the probe spin

T2 is to use more than one π pulse during the total sequence
time [3]. This technique is inspired by concatenated dynamical
decoupling schemes and in particular by the CPMG sequence
[29,30].More generally, these examples indicate that the EAM
scheme can be combined with various forms of decoupling.

IV. SENSITIVITY

In the previous section we saw that the coherence time
(and hence the time during which the phase can be acquired)

depends on the density of the environment spins. For the
EAM sequence, the signal too depends on the environment
spin density since it determines how many environment
spins are close enough to the probe spin to be considered
“strongly coupled.” Thus, the optimal sensitivity arises from
a compromise between the environment spin density and the
interrogation time. Including the probe decoherence due to the
environment spins, as well as other bath contributions, yielding
a coherence time T B

2 , the sensitivity of Eq. (5) becomes

η = πe(τ/T2)3e(τ/T B
2 )

3

Cγ
√

τ
(
2+ 1

2Pnsc

) . (7)

The functional form we assumed for the decay is inspired by
the measured behavior of NV centers in diamond [10,14] and
usually arises from a Lorentzian spectrum of the bath.
The couplings between the probe and environment spins

scales as λk ∼ γ 2/r3k (assuming dipolar interaction and setting
γI = γS = γ for simplicity), with rk the distance to the probe
spin. Then, for a fixed duration τ of the EAM sequence, the
number of “strongly coupled” spins nsc scales as nsc(τ ) ∼
γ 2ρτ , where ρ is the density of the environment spins. The
probe coherence time also scales with the density as T2 ∝ 1/ρ.
The sensitivity is then a function of two parameters: how

many polarized spins are strongly coupled in the coherence
time T2 and how much the coherence time is reduced with
respect to the background bath coherence time by introducing
the ancillary environment spins. We define a quantity Q =
Pργ 2T2, which describes the “quality” of the environment
spins. A second quantity describing the reduction in coherence
time due to the ancillary environment spins is given by the ratio
r = T B

2 /T2.
The EAM sensitivity then depends only on these two

parameters and the bath coherence time, such that Eq. (7)
becomes

η = πe(1+r3)(τ/T B
2 )

3

Cγ
√

τ
(
2+ τ

2T B
2

rQ
) . (8)

We can further optimize the sensitivity with respect to the
interrogation time τ and compare it to the case where the
field is measured by a probe spin (via a spin-echo sequence)
in the presence of the background spin bath only (that is, no
environment ancillary spins). In this case, the sensitivity is
given by [3]

ηecho,1 = πe(τ/T B
2 )

3

2Cγ
√

τ
. (9)

As shown in Fig. 5, the EAM sensitivity as given by
Eq. (8) improves up to r = 1, where the decoherence due
to the environment spins becomes more important than the
background bath. The improvement depends on the “quality”
Q, since for higher Q there are more strongly coupled spins
at a given T2 time. It is then clear that there is an optimum
number of environment spins that one would want to introduce
in the system to obtain the optimal sensitivity. Alternatively,
the quality Q can be improved by increasing T2 using the
dynamical decoupling methods we introduced in Sec. III B.
If the number of environment spins is instead fixed, we

are interested in comparing the EAM and spin-echo scheme
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FIG. 5. (Color online) Sensitivity of the EAMscheme normalized
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Q = 10 (dotted line), 20 (solid line), 30 (dashed line), and 50
(dash-dotted line). The ratio improves until r = T B

2 /T2 = 1, where
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the background decoherence.

for a given system (e.g., a given nanocrystal of diamond). In
Fig. 6 we plot the ratio of the EAM sensitivity to the spin-echo
sensitivity,

ηecho = πe(1+r3)(τ/T B
2 )

3

2Cγ
√

τ
(10)

(in the figure this expression is optimized with respect to the
interrogation time τ ). In the high r limit the sensitivity ratio

depends only on theQ factor, as η/ηecho ≈
6
√

e2/3

(1+2−7/3Q) .

To estimate the potential sensitivity improvement of the
EAMmethod we expressQ in terms of measurable quantities.
Specifically, we can write the environment quality as Q =
Pργ 2T2 ≈ P

√∑
λ2kT2, where we used the fact that γ

2ρτ =
nsc(τ ) � τ

√∑
λ2k . The average distribution of couplings

M2 = √∑
λ2k is related to the second moment of the probe

spin, which gives its dephasing time M2 = 1/T ∗
2 . Then the

sensitivity improvement is given by the ratio T2/T ∗
2 , which

can be quite large in many systems.
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FIG. 6. (Color online) Sensitivity ratio η/ηecho between EAMand
spin-echo schemes as a function of r = T B

2 /T2 for quality factor
Q = 10 (dotted line), 20 (solid line), 30 (dashed line), 50 (dash-dotted
line). When the decoherence induced by the added environment spins
dominates (large r) the sensitivity ratio is only determined by the
environment qualityQ.

V. POLARIZATION AND SENSITIVITY

The sensitivity discussed in the previous section depends
on the polarization of the environment spins. In this section
we first propose methods for creating this polarization, under
the assumption that the probe spin can be polarized at will.
We then generalize the EAM scheme to the case where no
polarization is available. This generalization will furthermore
prove useful in the case where the field to be measured is
affected by a random phase.

A. Polarizing the environment spins

In an environment-assisted magnetometer working at room
temperature, the environment spins will be in a thermal state,
close to the maximally mixed state. Polarization needs then to
be created by relying on the probe spin and the Hamiltonian
Eq. (6) that is required for the measurement scheme. To do this
we assume that the probe spin can be repetitively polarized:
This is the case, for example, for an NV center that can be
polarized optically. Polarization could then be transferred to
the spins in the environment by a swapping Hamiltonian such
asHSW ∼ (SxIx + SyIy). Although this operator is contained
in the dipole-dipole Hamiltonian, it is usually quenched in
the rotating frame if the energies of the two spin species are
different. For example, in the case of NV and P1 spins, the
zero-field splitting of the NV creates an energy mismatch.
The swappingHamiltonian can be reintroduced by inducing

a Hartman-Hahn matching of the energies in the rotating
frame under a continuous microwave irradiation [31,32]. By
adjusting the Rabi frequency and the offset, the two spin
species are brought into resonance and spin flip-flops (allowing
polarization transfer) are now allowed, leading to a buildup
of polarization. The environment spins can then be polarized
efficiently by alternating periods during which the probe spin
is polarized and periods during which polarization exchange
is driven by the microwave irradiation.
The buildup of polarization can happen either via direct in-

teraction between the probe spin and a spin in the environment
or indirectly via spin-diffusion [33,34]. Since we are interested
only in polarizing strongly coupled spins, the first process is
dominant. Then we can estimate the polarization time by the
number of spins we want to polarize divided by their aver-
age coupling strength, Tpol ∼ nsc(T )/ 〈λ〉 ≈ nsc(T )T ∗

2 [where
we used 1/T ∗

2 = √∑
λ2k to estimate the average coupling

strength, an upper bound for Tpol would be more generally
Tpol � nsc(T )T/π ].
A different strategy to initialize the spin environment is

measurement-based polarization with either feedback [35]
or adaptive schemes [36]. Precise measurement of the local
magnetic field created by the spin environment at the sensor
spin location effectively determines the environment spin state,
with an increasing knowledge of the magnetic field shift
corresponding to a reduced spin-state distribution and hence
higher polarization.
The polarization time will reduce the achievable sensitivity

per root Hz, η, since it increase the preparation time such
that fewer measurement can be performed during a certain
time interval. The exact sensitivity degradation will depend
on many factors, for example, the depolarization (T1) time
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of the environment spins, which determines how often the
preparation step needs to be repeated.

B. EAM with no polarization and phase error

In the discussion so far we assumed that the external
field to be measured was either static or oscillating in
phase with the control sequence. For b(t) = b cos(2πt/τ ),
we obtained the signal S = 1

2 (1− sin�), where the phase
is given by Eq. (3) for the EAM scheme or by � = 2γ bτ/π

for the spin-echo scheme. However, if the field has a random
phase (or cannot be synchronized perfectly with the pulse
sequence) the signal averaged over many runs goes to zero,
as 〈S〉 = 1

2 (1− 〈sin�〉) = 0 if 〈�〉 = 0. Furthermore, even
higher momenta of the signal, 〈Sn〉 are zero; thus, it is not
possible to infer information about the stochastic field by this
method.
A possible solution is to change the phase of the final

pulse [37] (or equivalently, to introduce an additional, known
phase accumulation during the free evolution). Then the signal
becomes

S = 1
2 [1+ 〈cos(� + ϑ)〉], (11)

where θ is the phase difference between the initial and final
pulse, � is the phase due to the field to be measured, and
we neglect any decay for simplicity. Since 〈cos(� + ϑ)〉 =
〈cos�〉 cosϑ , the maximum signal is obtained for ϑ = 0, or
by setting the phase of the initial and final pulse to be equal.
The phase� acquired in the modified EAM scheme (Fig. 2

with the last pulse along x) is different than that obtained in
Eq. (3). In the limit of small fields, we obtain the signal

Sx = 1− 1

2

(
bt

2π

)2 {
2+

∑
k

[
1+ cos

(
λkt

4

)2]
sin

(
λkt

4

)2}

≈ 1− 1

2

(
bt

2π

)2 [
2+ 3

4
nsc

]
, (12)

where again we only summed over the “strongly coupled”
environment spins. We note that the signal does not depend
on the polarization of the environment spins (at least to first
order in the polarization and to second order in the field b).
Thus, even in the absence of any polarization it is possible to
measure the external field (although not the sign of it).
We compare the achievable sensitivity of the EAM and

spin-echo method in the case where no polarization is present
and the control sequence describe above is used. Optimizing
the sensitivity with respect to the interrogation time τ , we
obtain the sensitivity for the spin-echo sequence,

ηecho,x = π

Cγ
√

τ
, (13)

while for the EAM sequence we have

ηEAM,x ≈ π

Cγ
√

τ

√
1+ 3

2nsc

. (14)

In the case of zero polarization (or of a signal presenting a
random phase) it is no longer possible to obtain a quantum
enhancement and have a scaling proportional to 1/nsc by
exploiting the spins in the bath. Indeed, if there is no
polarization, no entanglement is created in the system, and

no quantum enhancement of the sensitivity is expected.2

Nevertheless, for favorable conditions of the spin environment
(high qualityQ and low ratio r) itmight still be beneficial to use
the EAM scheme instead of a simple spin-echo magnetometry
because it allows for an improvement of ∼√

nsc by exploiting
the unpolarized spins.

VI. EXTENSION TO OTHER SPIN PROBES

In the previous sections we presented a scheme that relied
on the fact that for one of the eigenstates of the probe spin (|0〉)
the couplings to the environment spins was zero. It is possible
to extend the EAM scheme to the case where the probe is
a spin- 12 , but only if the environment-probe spin couplings
are all of the same sign. Such a situation could, for example,
be realized by considering a single quantum dot in the nuclear
spin environment. The interaction between the central spin and
the environment spins in this system is given by the contact
interaction, whose strength depends mainly on the electronic
spin wave-function density and does not present the strong
angular dependence of the dipolar interaction.
To apply the EAM scheme with a spin- 12 probe, we rotate

the environment spins to be aligned along the y axis before
applying the sequence shown in Fig. 2. For small fields, the
additional phase acquired thanks to the environment spins is
given by

�1/2 ∝ bτP
∑

k

sin

(
λkτ

4

)3
. (15)

If all the couplings λk are positives, the environment spin
contributions add constructively and it is always possible to
find a time τ such that there are nsc strongly coupled spins for
which 0 � λkτ � 4π , so that

∑
k sin(

λkτ

4 )
3 ≈ 4

3π nsc.
More generally, it is also possible to use probes with

higher spins, selecting two of their eigenstates as the levels of
interest, by driving transitions on resonance with their energy
difference. If the two eigenstates |a〉 and |b〉 are such their
eigenvalues have different absolute values, |ma| �= |mb|, then
we can apply the EAMsequence for any value of the couplings,
as the phase enhancement will be � ∝ ∑

k sin(
|ma |−|mb|

8 λkτ )2.
Otherwise, one might use the modified scheme just presented
in this section if all the coupling constants are positive.
As shown in this section, the scheme we introduced is

quite flexible and can be applied to many different physical
systems beyond the one we focused on in this paper. Besides
spin systems, the same ideas could, for example, find an
implementation based on trapped ions [2].

VII. DISCUSSION AND CONCLUSION

In conclusion, we analyzed the EAM scheme introduced
in Ref. [2], which aims at enhancing the sensitivity of a
single solid-state spin magnetic field sensor, by exploiting the

2Note that our assumptions of no direct access to individual ancillary
spins preclude using adaptive schemes, which have been shown in
other conditions to achieve quantum enhancement of the sensitivity
even without entanglement [6].
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possibility to coherently control part of its spin environment.
The environment spins act as sensitive probes of the external
magnetic field, and their acquired phase is read out via
the interaction with the sensor spin. Since the measurement
scheme maintains roughly the same coherence times of spin-
echo-based magnetometry and the noise is still the shot noise
of a single qubit, we achieve a quasi-Heisenberg limited
sensitivity enhancement. We analyzed in detail the sources
of decoherence and confirmed with numerical simulations
that the sensor coherence time under the EAM scheme is
comparable to the T2 time under spin-echo, since the leading
cause for decoherence has the same origin in the two cases.
We further showed that dynamical decoupling schemes aimed
at increasing the correlation time of the spin environment, by
reducing the effects of intrabath couplings, can be embedded
in the measurement scheme and leads to longer coherence
times and enhanced sensitivity. We extended the EAM scheme
to the case where the environment spins are in a highly
mixed (zero-polarization) state, by appropriately modifying
the detection sequence. This modified scheme achieves a

classical scaling of the sensitivity, but can still be beneficial
whenever the polarization methods we outlined cannot be
applied or the ac field to be measured has a random phase. Our
analysis finds that the sensitivity is determined by the “quality”
of the environment, a parameter that takes into account a
compromise between the number of strongly coupled environ-
ment spins with the reduced coherence time they entail. This
result can be used to define the specifications of engineered
systemswith controlled densities of spin impurities for optimal
sensitivity.
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