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Topological numbers can characterize the transition between different topological phases, which are not
described by Landau’s paradigm of symmetry breaking. Since the discovery of the quantum Hall effect,
more topological phases have been theoretically predicted and experimentally verified. However, it is still
an experimental challenge to directly measure the topological numbers of various predicted topological
phases. In this Letter, we demonstrate quantum simulation of topological phase transition of a quantum
wire (QW), by precisely modulating the Hamiltonian of a single nitrogen-vacancy (NV) center in diamond.
Deploying a quantum algorithm of finding eigenvalues, we reliably extract both the dispersion relations and
topological numbers. This method can be further generalized to simulate more complicated topological
systems.
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Topological numbers were first introduced by Dirac to
justify the quantization of electric charge [1], and later
developed into a theory of magnetic monopoles as topo-
logical defects of a gauge field [2]. An amazing fact is that
fundamental quantized entities may be deduced from a
continuum theory [3]. Later on, topological numbers were
used to characterize the quantum Hall effect [4,5] in terms
of transition between topological phases [6]. Since the
topological number in quantum Hall systems is directly
proportional to the resistance in transport experiments, its
robustness against local perturbations enables a practical
standard for electrical resistance [4]. In the past few years,
more topological materials have been discovered, including
topological insulators [7,8], topological superconductors
[9,10], etc.
Developing robust techniques to probe topological num-

bers becomes an active research topic of both fundamental
and practical importance. Recently, a generalized method of
extracting a topological number by integrating dynamic
responses has been proposed [11]. Guided by this theoretical
proposal, experiments have successfully measured the topo-
logical Chern number of different topological phases using
superconducting circuits [12,13]. However, their measure-
ment of the Chern number requires integration over con-
tinuous parameter space, which may not give an exactly
discretized topological number. Different from the above
integration approach, here we take the simulation approach
[14–16] and use a single NV center in natural diamond at
room temperature [17,18] to simulate a topological system.
Moreover, we deploy a quantum algorithm of finding
eigenvalues to map out the dispersion relations [19,20]
and directly extract the topological number, which

enables direct observation of the simulated topological phase
transition.
We consider the topological phase transition associated

with a semiconductor quantum wire with spin-orbital
interaction, coupled to an s-wave superconductor and
magnetic field [9,21–23]. At the boundary between differ-
ent topological phases of the quantum wire, Majorana
bound states can be created as a promising candidate
for topological quantum information processing [24].
The Hamiltonian of this system can be described using
the Nambu spinor basis ψT ¼ ðψ↑;ψ↓;ψ

†
↓;−ψ

†
↑Þ:

HQW ¼ pσzτz þ ðp2 − μÞτz þ Δτx þ Bxσx; ð1Þ

with the momentum p, chemical potential μ, pairing
amplitude Δ, Zeeman energy Bx, and Pauli matrices σa
and τa acting in the spin and particle-hole sectors, respec-
tively. Without loss of generality, we may assume negative
μ, non-negative Bx and Δ.
The system described by Eq. (1) has two different

topological phases determined by the relative strength of
fBx; μ;Δg: (i) the trivial superconductivity phase (denoted
by SC phase) when Bx <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ2

p
, and (ii) the topo-

logical superconductivity phase (denoted by TP phase)
when Bx >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ2

p
. The phase diagram and dispersion

relations of different phases are illustrated in Fig. 1(a).
There are four energy bands for this system, consisting of
two particle bands and two hole bands. We may label the
energy bands as 1, 2, 3, 4 from bottom to top as illustrated
in Fig. 1(a). The gap between the 2nd and 3rd bands will
disappear during the phase transition.
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To illustrate the distinct topological nature associated with
the SC and TP phases, we may consider the two lowest
energy (i.e., 1st and 2nd) eigenstates with momentum p
varying from 0 to ∞. First, it is easy to see that for p → ∞,
the second term (τz) in Eq. (1) dominates, which requires
that the 1st and 2nd energy eigenstates be both eigenstates
of τz with eigenvalue −1 [i.e., both pointing to the same
direction of the Bloch sphere associated with τ, as illustrated
in Fig. 1(b)]. For p ¼ 0, HQW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
τϕ þ Bxσx,

where τϕ ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
Þð−μτz þ ΔτxÞ. The two lowest

energy states are eigenstates of τϕ with the same eigenvalue
−1 (i.e., pointing in the same direction in the τ-Bloch sphere)
when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
> Bx, or with different eigenvalues �1

(i.e., pointing in the opposite directions in the τ-Bloch
sphere) when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
< Bx, as illustrated in Fig. 1(b).

Hence, we may introduce the quantityMðpÞ ¼ h~τi1 · h~τi2 to
characterize the alignment in the τ-Bloch sphere for the

bitrajectories associated with two lowest energy eigenstates
with momentum p, with h~τij ¼ hψ jj~τjψ ji for the jth lowest
energy eigenstate jψ ji. The two types of topologically
different bitrajectories [with Mðp¼ 0Þ ·Mðp→∞Þ¼�1]
imply the existence of distinct topological phases for the
system [25]. Mathematically, a topological number can
be computed as the sign product of the Pfaffian of anti-
symmetric matrices associated with momentum p ¼ 0 and
p → ∞ [25]:

ν ¼ sgnðμ2 þ Δ2 − B2
xÞ: ð2Þ

Since Bx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
is always positive, the value of ν is

determined by the sign of the quantity −Bx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
,

which is one of the eigenenergies of HQWðp ¼ 0Þ.
The corresponding eigenstate can be represented by
jΦi ¼ jΦσi ⊗ jΦτi, where jΦσi and jΦτi are the eigenstates
of Bxσx and −μτz þ Δτx with eigenenergies −Bx andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
, respectively. It is direct to deduce jΦσi ¼

j←i ¼ ðj↑i − j↓iÞ= ffiffiffi
2

p
(j↑i and j↓i means spin up and

down) and jΦτi ¼ αjpi þ βjhi (jpi and jhi means particle
and hole) which is dominated by jpi (i.e., jαj2 > jβj2).
Therefore, we can apply the quantum algorithm of finding
eigenvalues [20] for the state jΦi to directly obtain the
eigenenergy −Bx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
, the sign of which is exactly

the topological number ν.
The QW Hamiltonian is simulated by a highly control-

lable two-qubit solid-state system, which is a color defect
named the NV center in diamond consisting of a substitu-
tional nitrogen atom and an adjacent vacancy, as shown in
Fig. 2(a). The electrons around the defect form an effective
electron spin with a spin triplet ground state (S ¼ 1)

(a)

(b)

FIG. 1. Phase diagram and geometric illustration of the
topologically distinct phases. (a) Phase diagram of quantum wire
system (calculated at Bx ¼ 1.3). The green line gives the
boundary between the SC phase and TP phase. The energy
dispersion relations of a SC point and a TP point are plotted in the
insets. (b) Geometric illustration of the topological difference
between the SC and the TP phases. In order to clearly visualize
the two different trajectories associated with the 1st and 2nd
energy eigenstates, the Bloch spheres are turned along the Z axis
with p changes from 0 to ∞. This rotational transformation does
not change the topological properties of the bitrajectories.

(a) (b) (c)

FIG. 2. NV system and its correlation with the QW system.
(a) Structure and energy levels of the NV centers. (b) Hyperfine
structure of the coupling system with NV electron spin and 14N
nuclear spin. The 9 energy levels are labeled as j1i to j9i. The
quantum simulation is carried out in the subspace spanned by
fj4i; j5i; j7i; j8ig. Two MW pulses (purple arrows) and two RF
pulses (orange arrows) are applied simultaneously to selectively
drive the corresponding electron and nuclear spin transitions.
(c) Four basis states of the QW system corresponding to the four
NV states inside the square box.
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and couple with the nearby 14N nuclear spin. With an
external magnetic field B0 along the NV axis, the
Hamiltonian of the NV system is (ℏ ¼ 1) [31]:

H0
NV ¼ −γeB0Sz − γnB0Iz þDS2z þQI2z þ ASzIz; ð3Þ

where Sz and Iz are the spin operators of the electron spin
(spin-1) and the 14N nuclear spin (spin-1), respectively.
The electron and nuclear spins have gyromagnetic ratios
γe=2π ¼ −28.03 GHz=T and γn=2π ¼ 3.077 MHz=T,
respectively. D=2π ¼ 2.87 GHz is the axial zero-field
splitting parameter for the electron spin, Q=2π ¼
−4.945 MHz is the quadrupole splitting of the 14N nuclear
spin, and A=2π ¼ −2.16 MHz is the hyperfine coupling
constant. There are nine energy levels, j1i;…; j9i, as
labeled in Fig. 2(b). The simulation is performed in the
subspace spanned by fj4i; j5i; j7i; j8ig, associated with the
electron spin states fme ¼ 0;−1g (encoding the pseudo-
spin σ) and the nuclear spin states fmn ¼ 0; 1g (encoding
the pseudospin τ). The NV spins are radiated by two
microwave (MW) pulses and two radio-frequency (RF)
pulses simultaneously, which selectively drive the two
electron-spin transitions and the two nuclear-spin transi-
tions, respectively, as illustrated in Fig. 2(b). The frequen-
cies of the pulses are all slightly detuned from resonance
with detuning δMW for the two MW pulses and δRF for the
two RF pulses. In the rotating frame, the Hamiltonian can
be written as [25]

Hrot
NV ¼ ΩMW1 − ΩMW2

4
σxτz −

1

2
δRFτz þ

ΩMW1 þ ΩMW2

4
σx

þ ΩRF

2
τx −

1

2
δMWσz; ð4Þ

where ΩMW1;2 are the Rabi frequencies of the two electron
spin transitions, ΩRF is Rabi frequency of the two nuclear
spin transitions that are set to the same value. By choosing
ΩMW1 ¼ −ΩMW2 ¼ ΩMW, the parameters for the QW
system and the NV spins can be identified as the
following: p ∼ ΩMW=2, p2 − μ ∼ −δRF=2, Δ ∼ ΩRF=2,
and Bx ∼ −δMW=2. Here, the numerical values of the left
side are reduced by a factor of 11 to coincide with the
typical values of NV parameters. Hence, HQW can be
exactly reproduced up to a Hadamard gate on the electron
spin transforming the spin operators σx↔σz in Hrot

NV. The
Hadamard gate does not change the eigenvalues and can
be fully compensated by modifying the basis states in the
experiment. As shown in Fig. 2(c), the four states of the
NV system can be mapped to a QW system one to one.
To obtain the energy-dispersion relations of QW and

the topological number, we deploy a quantum algorithm
of finding eigenvalues [20] to measure the eigenvalues of
QW. The initial state of the NV spins is prepared to
ðj6i þ jΨiÞ= ffiffiffi

2
p

, where j6i is used as a reference state
and jΨi ¼ j4i; j5i; j7i, or j8i. In general, jΨi can be
expanded by the QW eigenstates jΨi ¼ P

4
j¼1 cψ ;jjϕji

(HQWjϕji ¼ Ejjϕji). By applying the simulating pulses
for an adjustable period mτ (m ∈ N), jΨi evolves under the
effective QW Hamiltonian and accumulates phases ∝ Ejmτ
with the state becoming ðj6i þP

4
j¼1 cψ ;je

−i2πEjmτjϕjiÞ=ffiffiffi
2

p
. It can be transformed back into the representation of

NV spin states (jϕji ¼
P

l¼4;5;7;8c
�
l;jjli) and can be written

as ðj6i þP
l¼4;5;7;8al;mjliÞ=

ffiffiffi
2

p
, with coefficients al;m ¼P

4
j¼1 cψ ;jc

�
l;je

−i2πEjmτ which is a function of the QW
eigenvalues. The coefficient of jΨi, i.e., aψ ;m, can be
measured in the experiment. Therefore, the energy spectrum
of the QW Hamiltonian can be obtained by Fourier trans-
forming of the time-domain signals faψ ;mg. There will be at
most four peaks in the energy spectrum with their heights
∝ jcψ ;jj2. Since the 1st and 4th energy bonds are trivial, we
only care about the 2nd and 3rd energy bonds. As jc5ð7Þ;2j2 þ
jc5ð7Þ;3j2 ≫ jc4ð8Þ;2j2 þ jc4ð8Þ;3j2 in the case of low momen-
tum jpj ≪ ∞ [25], jΨi is chosen to be j5i or j7i in the
experiment. However, the detection of fa4;mg is easier than
that of fa7;mg. By reversing the sign of δMW and σz
simultaneously in Eq. (4), one can see that the
Hamiltonian remains unchanged. It means jΨi can choose
j4i instead of j7i by using δ0MW ¼ −δMW.
The experimental realization was preformed on a home-

built setup which has been described earlier [32]. The
external statistical magnetic field was adjusted around
50 mT in order to polarize the 14N nuclear spin using
dynamic polarization technology [33]. The experimental
process is shown in Fig. 3(a). At first, the NV system was
prepared to j4i by a 4 μs laser pulse, then transformed to
the superposition state ðj6i þ jΨiÞ= ffiffiffi

2
p

during the initial-
ization process. (jΨi ¼ j5i by the second row RF pulses
and jΨi ¼ j4i by the third row RF pulses shown in the
brackets). After that, the two RF pulses and the two MW
pulses for simulating the QW Hamiltonian were applied
simultaneously with time length mτ. Finally, the state was
rotated back to j4i with phase shift θ and the photo-
luminescence was detected. As shown in Fig. 3(b), increas-
ing the θwould lead to oscillating photoluminescence. aψ ;m
could be obtained from the oscillation amplitude and phase
[25]. With different pulse length mτ, we observed the time-
domain evolution of aψ ;m [see Fig. 3(c)]. The eigenvalue of
the simulated Hamiltonian can be acquired by the Fourier
transform of this time-domain signal [Fig. 3(d)].
Figure 4(a) shows the energy dispersion relations

obtained in experiment for the two SC points (μ ¼ −1.6,
−1.44), two TP points (μ ¼ −1.14, −0.98), and the critical
point (μ ¼ −1.29), given Δ ¼ 0.165 and Bx ¼ 1.3. The
experimental results agree well with the theoretical expect-
ations except for the TP points. The small energy gap in TP
phase disappears due to the fluctuating magnetic field from
the surrounding 13C spin bath, which induces phase errors
on the NV electron spin. The phase errors will cause not
only peak broadening but also peak shifting on the energy
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spectrum [25]. In addition, the pulses applied are not
perfectly selective pulses, the crosstalk between these
pulses will also cause slight peak shifts on the energy
spectrum [25]. The red lines in Fig. 4(a) give the numerical
calculated energy dispersion including these imperfections
which nicely coincide with the experimental results [25].
Further numerical simulation suggests that the energy gap
can be observed if a NV sample with longer electron spin
coherence time is adopted [25,34].
Even though the small energy gap of the TP phase is

difficult to resolve at the current experimental condition,
the topological number ν characterizing different topologi-
cal phases can still be unambiguously extracted. As
mentioned earlier, ν can be directly determined by the
sign of the eigenenergy of jΦi. Since jΦi is dominated by
jp;←i which is corresponding to j7i [see Figs. 2(b), 2(c)],
the eigenenergy of jΦi can be reliably obtained from
fa4;mg. The sign of the eigenenergy can be calculated as

sgnðEÞ ¼
Z þ∞

−∞
sgnðEÞpðEÞdE

¼
Z þ∞

−∞

sgnðEÞffiffiffiffiffiffi
2π

p
σ
e−½ðE−EcÞ2=2σ2�dE; ð5Þ

where Ec and σ are the fit center and the fit error of the
energy spectrum [see Fig. 3(d)]. Figure 4(b) gives a clear
illustration of the topological phase transition by measuring
ν versus μ, where a sharp change of ν occurs near μ ≈ −1.3.
The deviation of the critical point from the theoretical
expectation value μ ¼ −1.29 is due to the inaccuracy of
measuring the very small eigenenergy (close to 0) near the
critical point for which even a slight shift will change its
sign. This deviation can be eliminated by using a NV
sample with longer coherence time [25]. Away from the
critical point, the measured topological number will only
have a negligibly small deviation from the exact value.
In conclusion, we have demonstrated quantum simula-

tion of a topological phase transition with a single NV
center at room temperature. Using a quantum algorithm of
finding eigenvalues, we can not only obtain the dispersion
relations, but also directly extract the topological number
of the system. Different from the scheme of integration of
dynamic responses [11–13], our approach of direct meas-
urement of the topological number can unambiguously give
a discretized value of ν over almost all parameter space
except for a small region around the phase transition. Even
in the presence of large magnetic field fluctuations that may
smear out the energy gap in the dispersion relations, the
approach of direct extraction of the topological number
remains robust and unambiguously characterizes the topo-
logical phase transition.
We may further improve our NV-center-based quantum

simulators by using isotopically purified diamond, with

(a)

(b) (c) (d)

FIG. 3. Simulation of the QW Hamiltonian and detection of its
eigenvalues. (a) The pulse scheme. The superscript α(β) of the
RF pulses indicates the nuclear spin operation between j4i and
j5i(j5i and j6i). For the initialization and readout parts there are
two pulse sequences, which correspond to the two initial state
cases jΨi ¼ j5i (the upper pulse sequence) and j4i (the lower
bracketed pulse sequence), respectively. (b) Photoluminescence
(PL) changes versus different the RF π=2 pulse phase θ for fixed
evolution time mτ. The points are the experimental data and the
curve is the sine function fit. Error bars indicate �1 standard
deviation induced by the photon shot noise. (c) Measurement of
aψ ;m with different evolution time mτ. Black and red lines are the
numerical calculation results. (d) The energy spectrum of the
simulated Hamiltonian yielded from the Fourier transform of
the time-domain data in (c). A Gaussian fit (the curve) is
performed to get the exact eigenenergy value.

(a)

(b)

FIG. 4. Energy dispersion relations and topological phase
transition. (a) Energy dispersion relations with different chemical
potential μ. The points, light cyan lines, and red lines represent
the experimental, analytical, and numerical results, respectively.
Error bars given by fit error are smaller than the symbols. As the
energy bonds are symmetrical about p ¼ 0, only the right half
points (i.e., p ≥ 0) are actually measured in the experiment.
(b) The measured topological number ν versus the chemical
potential μ, which shows a topological phase transition happened
near μ ≈ −1.3. The cyan line is the theoretical prediction.
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significantly extended electron spin coherence time [34].
Moreover, with reliable control of multiple spins of the
NV center [35], more complicated topological systems can
be simulated. Utilizing entanglement can lead to a scalable
quantum simulator of NV centers [36]. In addition, the
quantum algorithm of finding eigenvalues can be extremely
efficient for multiple spins, with only a polynomial time
overhead with the number of spins [20]. Therefore, the
NV-center-based quantum simulator is a very promising
platform, which will provide a powerful tool to investigate
novel quantum systems.
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