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Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator,
known as “cat states,” have been an elegant demonstration of Schrödinger’s famous
cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two
microwave cavities bridged by a superconducting artificial atom, which can also be
viewed as an entangled pair of single-cavity cat states. We present full quantum state
tomography of this complex cat state over a Hilbert space exceeding 100 dimensions
via quantum nondemolition measurements of the joint photon number parity. The
ability to manipulate such multicavity quantum states paves the way for logical
operations between redundantly encoded qubits for fault-tolerant quantum
computation and communication.

R
apid progress in controlling individual
quantum systems over the past 20 years
(1, 2) has opened a wide range of possi-
bilities of quantum information process-
ing. Potential applications, from universal

quantum computation to long-distance quantum
communication, share the central theme of ex-
ploiting quantum superpositions within a large
Hilbert space. Further stimulated by curiosity
about the quantum-classical boundary, there has
been growing interest in generating superposi-
tions of “macroscopically distinguishable” states
that are far apart in phase space. The canonical
example is superpositions of coherent states of
a harmonic oscillator, i.e. Nðjai þ j−aiÞ with
N ≈ 1=

ffiffiffi

2
p

at large jaj, known as “cat states.”
The two components correspond todistinct quasi-
classical wave packets, in analogy to Schrödinger’s
gedankenexperiment of an unfortunate cat inside
a closed box being simultaneously dead and alive.
Cat states have so far been realized with single-
mode optical (3) ormicrowave fields (1, 4, 5) with
up to about 100 photons (6) but are increasingly
susceptible to decoherence at large size.
Manipulating a large number of excitations

in such harmonic oscillator states is one of two
possible approaches to expand the information
capacity of fully controlled quantum systems. Cat
states, which span a Hilbert space whose dimen-
sion grows linearly with the number of photons,
are an attractive approach for redundantly en-
coding quantum information for error correction
(7–9). The other, more traditional, way to scale
up a quantum system is to build many modes of
excitations, each operated as a two-level qubit, so
that the Hilbert space dimension increases expo-
nentially with the number of modes (10, 11). Is
it possible to combine the benefits of both ap-
proaches by creating a cat state that lives in
more than a single mode or box? The idea of

nonlocal or multimode cat dates back to the
early days of cavity quantum electrodynamics
(QED) (12), but experimental demonstration has
remained a formidable challenge.
Here, we deterministically create a two-mode

cat state of microwave fields in two super-
conducting cavities, using the strong dispersive
interaction with a Josephson junction–based
artificial atom. This state can be expressed as

jyTi ¼ NðjaiAjaiBTj−aiAj−aiBÞ ð1Þ
where jTaiA and jTaiB are coherent states of
two microwave eigenmodes (Alice and Bob) at
different frequencies. Each of the two modes is
predominantly localized in one of the two cavi-
ties that are weakly connected. For convenience,
we will refer to the state of each mode as the
state of each cavity. Previous realization of the
state jyTi has been limited to using small and
nonorthogonal coherent states (13). For larger jaj
(i.e., jaj2 ≳ 2), jyTi can be considered a single cat
state living in two boxes, whose superposed
components are coherent states in a linearly hy-
bridized mode of Alice and Bob (14). Alterna-
tively, in the more natural eigenmode basis, jyTi
has been known as the entangled coherent states
in theoretical studies (15) andmay also be under-
stood as two single-cavity cat states that are en-
tangled with each other.

The two-mode cat state is an eigenstate of the
joint photon number parity operator P^J .

P
^
J ¼ P

^
AP

^
B ¼ eipâ

† âeipb
^†b

^ ð2Þ

wherea^†(a^) andb
^†(b

^
) are the creation (annihilation)

operators of photons inAlice andBob, andP^A and
P^B are the photon number parity operators in in-
dividual cavities. Remarkably, jyþi (or jy−i) has
definitively an even (or odd) number of photons
in the two cavities combined, whereas the pho-
ton number parity in each cavity separately ismax-
imally uncertain.Quantumnondemolition (QND)
measurements of such parity operators not only
illustrate the highly nonclassical properties of the
state but also are instrumental for quantum er-
ror correction in general.
We realize measurements of the joint photon

number parity and single-mode parities using the
dispersive interaction with three energy levels
of an artificial atom. Based on joint parity mea-
surements, we further demonstrate full quantum
state tomography of the two-cavity system (16). This
is obtained in the form of the joint Wigner func-
tion WJ ðbA; bBÞ, which is a continuous-variable
representation of the quantum state with bA and
bB being complex variables in Alice and Bob,
respectively. Without correcting for the infidelity
of the P^J measurement operator, we observe
quantum state fidelity of 81% for a two-mode cat
state with a = 1.92. The high-quality and high-
dimensional quantum control is further mani-
fested by the presence of entanglement exceeding
classical bounds in a Clauser-Horne-Shimony-
Holt (CHSH)–style inequality for two continuous-
variable systems (16). Finally, our two-cavity
space effectively encodes two coupled logical qubits
in the coherent state basis, and we present effi-
cient two-qubit tomography in this encoded space.
Our experiment uses a three-dimensional (3D)

circuitQEDarchitecture (17), where twohigh-quality
3D cavities and a quasiplanar readout resona-
tor simultaneously couple to a fixed-frequency
transmon-type superconducting artificial atom
(Fig. 1, A and B) (14). The two cavities that host
the cat state of microwave photons are imple-
mentations of the longest-lived quantum mem-
ory in circuit QED to date (18). We use the
transmon as an ancilla to manipulate the multi-
photon states in the two cavities, and its lowest
three levels, jgi, jei, and j f i, are accessed in this
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Table 1. Hamiltonian parameters and coherence times of the two storage cavities and the trans-
monancilla.These include transition frequencies (w/2p), energy relaxation times (T1), Ramseycoherence

times (T*2 ), and the dispersive frequency shifts (c/2p) between each cavity and each ancilla transition.The
cavity frequencies are given with a precision of ±100 Hz and are stable over the course of several months.

w/2p T1 T*2 cge/2p cef/2p

Cavity Alice 4.2196612 GHz 2.2–3.3 ms 0.8–1.1 ms 0.71 MHz 1.54 MHz
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Cavity Bob 5.4467679 GHz 1.2–1.7 ms 0.6–0.8 ms 1.41 MHz 0.93 MHz
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Ancilla jei→jgi 4.87805 GHz 65–75 ms 30–45 ms — —
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Ancilla jfi→jei 4.76288 GHz 28–32 ms 12–24 ms — —
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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experiment. The device is cooled down to 20 mK
in a dilution refrigerator, and microwave trans-
mission through the readout resonator is used to
projectively measure the ancilla state with a het-
erodyne detection at room temperature aftermul-
tiple stages of amplification.
We consider the Hamiltonian of the system

(with parameters listed in Table 1), including two
harmonic cavity modes with angular frequencies
wA and wB, a three-level atom with transition
frequencies wge and wef , and their dispersive
interaction

H=ℏ ≈ wAâ†âþ wBb
^†b

^þ wgejeihejþ
ðwge þ wef Þj f ih f j

−cgeA â†âjeihej−ðcgeA þ cefA Þâ†âj f ih f j

−cgeB b
^†b

^jeihej−ðcgeB þ cefB Þb
^†b

^jf ihf j ð3Þ

where cgei and cefi represent the dispersive fre-
quency shifts of cavity i associated with the two
ancilla transitions. The readout resonator and
small high-order nonlinearities are omitted for
simplicity (14). Using time-dependent classical
drives in the form of microwave pulses, we can
perform arbitrary ancilla rotations in both jgi−jei
and jei−j f i manifolds and arbitrary cavity state
displacements in Alice (D^bA ¼ ebAâ

†−bAâ* ) and Bob
(D^bB ¼ ebBb

^†−bBb
^* ) independently. More important,

the state-dependent frequency shifts (c’s) allow
cavity state manipulations conditioned on the
ancilla level or vice versa using spectrally selec-
tive control pulses, thus realizing atom-photon
quantum logic gates (6). It can be further shown
that with separate drives on the two cavities
and a drive on the ancilla, this Hamiltonian
permits universal quantum control of the entire
system (19).
We generate the two-mode cat state jyTi deter-

ministically using a series of logic gates as shown
in Fig. 1C (20). In particular, we implement effec-
tive displacements (D^2a

g ) of both cavities condi-
tional on ancilla being in jgi (14), which realizes a
three-way entangling gate, 1

ffiffi

2
p ðjgi þ jeiÞj0iAj0iB→

Nðjgij0iAj0iB þ jeij2aiAj2aiBÞ. Then an ancilla
rotation (R00

p ) conditional on the cavity state
j0iAj0iB disentangles the ancilla, and subsequent
cavity displacements bring the cavities to a two-
mode cat state. The rotation axis determines the
sign (or more generally, the phase angle) of the
cat state superposition.
We probe the cavity state by QND measure-

ments of the photon number parity. Parity mea-
surement of a single cavity has been previously
demonstrated (9, 21), where a conditional cavity
phase shift (4), Cf ¼ I� jgihgj þ eifâ

†â � jeihej,
with f = p, maps cavity states with even or odd
photon numbers to jgi or jei of a two-level ancilla,
respectively, for subsequent readout. To achieve
joint parity mapping in our two-cavity system,
we exploit three levels of the ancilla to realize
simultaneous Cp in both Alice and Bob. With the
ancilla frequency designed to be in between
those of the two cavities, the jei→jgi transition
shows stronger interaction with Bob (cgeB > cgeA ),

whereas the j f i→jei transition shows stronger
interaction with Alice (cefA > cefB ). Manipulating
the ancilla in different superposition states among
the three levels allows us to concatenate con-
ditional phase gates associated with cgei and cefi
with arbitrary weights (14). This additional de-
gree of freedomnot only allows formeasurement
ofP^J but also enables paritymeasurement of each
cavity individually without affecting the other.
Based on single-cavity parity measurements,

we can measure the Wigner function of individ-
ual cavities,WiðbiÞ ¼ 2

pTr½rD^bi P
^
iD
^
bi
† � (i = A or B)

(5, 21). The Wigner function is a standard meth-
od to fully determine the quantum state of a
single-continuous-variable system, which repre-
sents the quasiprobability distribution of pho-
tons in the quadrature space [Re(b)-Im(b)]. Our
measured WA and WB for a two-mode cat state
jy−i with a = 1.92 (Fig. 2) illustrates that the
quantum state of either Alice or Bob on its own is
a statistical mixture of two clearly separated co-
herent states. However, single-cavityWigner func-
tions do not contain full information on the global
quantumstate.We find strong correlationbetween
cavities by measuring joint photon number party

hP^J i ¼ −0:81T0:01, even though each cavity alone
shows mean photon number parity of hP^Ai ≈
hP^Bi ≈ 0. Additional evidence of the joint parity
can be seen in a spectroscopy measurement (14).
A full quantum state tomography of the two-

cavity system can be realized by measuring the
joint Wigner function (22):

WJ ðbA; bBÞ ¼
4

p2
Tr½rD^bAD

^
bB
P
^
JD
^
bB
D
^
bA
† �

≡
4

p2
PJ ðbA; bBÞ ð4Þ

WJ is a function in the 4D phase space, whose
value at each point [Re(bA), Im(bA), Re(bB), and
Im(bB)], after rescaling by p2/4, can be directly
measured from the expectation value of the joint
parity after independent displacements in Alice
and Bob (16). We will therefore use the scaled
joint Wigner function, or “displaced joint parity
function,” PJ ðbA; bBÞ to represent the cavity state.
To illustrate the core features in this 4D Wigner
function of the state jy−i, we show its 2D cuts
along the Re(bA)-Re(bB) plane and Im(bA)-Im(bB)
plane for both the calculated ideal state (Fig. 3, A

1088 27 MAY 2016 • VOL 352 ISSUE 6289 sciencemag.org SCIENCE

Fig. 1. Cartoon schematic of device architecture and experimental protocol. (A) A 3D view of the
device consisting of two coaxial cavities (Alice and Bob), a Y-shaped transmon with a single Josephson
junction (marked by ×), and a stripline readout resonator. All components are housed inside a single piece
of bulk high-purity aluminum, with artificial windows drawn for illustration purposes. (B) A top view of the
same device, showing the relative position of the sapphire chip, center posts of the coaxial cavities,
transmon antenna, and the readout resonator. (C) The microwave control sequences for generating the
two-mode cat state and performing Wigner tomography. D^ b represents cavity displacement by b, and a
superscript g is added if the displacement is conditional on the ancilla being in jgi. Rge

q or Ref
q represents

ancilla rotation by q (around an axis in the x-y plane) in the jgi−jei or jei−jfi manifold. Rp
00 is an ancilla

jgi−jei rotation conditional on the cavities being in j0iAj0iB. Cfrepresents a cavity phase shift of f, con-
ditional on the ancilla being in an excited state. By choosing fi þ f0i ¼ p or 2p, we can measure photon
number parity of Alice (P^A), Bob (P^B), or the two combined (P^ J), to perform Wigner tomography of
individual cavities or the joint Wigner tomography.
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and B) (16) and the measured data (Fig. 3, C and
D). The Wigner function contains two positively
valued Gaussian hyperspheres representing the
probability distribution of the two coherent-state
components and an interference structure around
the originwith strong negativity. Excellent agree-
ment is achieved between measurement and
theory, with the rawdata showing an overall 81%
contrast of the ideal Wigner function. Compre-
hensive 4Dmeasurements of PJ further allow us
to reconstruct the density matrix of the quantum
state, which shows a total fidelity of also about
81% against the ideal jy−i state. The actual state
fidelitymay be substantially higher if various errors
associated with tomography are removed (14).
Additional visualization of the Wigner function
data is presented in a supplementary movie (14).
Analyzedwithin the eigenmode basis, the two-

mode cat state is a manifestation of quantum
entanglement between two quasiclassical systems.
The entanglement can be tested against a CHSH-
style Bell’s inequality constructed from PJ at four
points in the phase space (16). We observe a Bell
signal (14) of 2.17 ± 0.01 for the state in Fig. 3,
exceeding the classical bound of 2. Without com-
plete spatial separation and fully independent
readout of the two modes, this violation should

be considered a demonstration of the fidelity of
the entanglement and the measurement rather
than a true test of nonlocality. Nevertheless,
various schemes exist to further separate the two
modes, such as converting the cavity fields into
itinerant microwave signals and/or optical pho-
tons (23).
Compared with other experimentally realized

quantum states of two harmonic oscillators, a

striking property of the two-mode cat state is
that its underlying compositions are highly dis-
tinguishable. Two-mode squeezed states in various
physical implementations—e.g. (24)—show strong
entanglement but are Gaussian states without
the Wigner negativity and the phase space
separation, as in a cat state. Generation of the
“N00N” state, an entangled state in the discrete
Fock state basis, typically requires quantum

SCIENCE sciencemag.org 27 MAY 2016 • VOL 352 ISSUE 6289 1089

Fig. 2. Wigner tomography of individual cavities.
Measured scaled Wigner function of (A) Alice
[p2WAðbAÞ] and (B) Bob [p2WBðbBÞ], respectively,
for the two-mode cats state jy−i, each plotted
in the complex plane of Re(bi) and Im(bi) (i = A
or B). For either cavity, the lack of interference
fringes indicates a statistical mixture of two co-
herent states, in striking contrast to the regular
(single-mode) cat state that can also be straight-
forwardly generated in our experiment (14). The
distortion of the coherent states is due to higher-
order Hamiltonian terms (14).The photon number
parity within each cavity is close to 0, reflected
by the value of respective Wigner functions near
the origin.

Fig. 3. Joint Wigner tomography. (A and B) A 2D plane-cut along (A) axes Re(bA)-Re(bB) and (B) axes
Im(bA)-Im(bB) of the calculated 4D scaled jointWigner functionPJðbA; bBÞ of the ideal odd-parity two-mode
cat state jy−iwith a = 1.92.The red features in (A) represent the probabilitydistribution of the two coherent
states components.The central blue feature in (A) and fringes in (B) demonstrate quantum interference
between the two components. (C and D) The corresponding Re(bA)-Re(bB) and Im(bA)-Im(bB) plane-
cuts of the measured PJðbA; bBÞ of jy−i, to be compared with the ideal results in (A) and (B), respectively.
Data are taken in an 81 by 81 grid,where every point represents an average of about 2000binary outcomes
of joint parity measurements. (E) Diagonal line-cuts of the data shown in (A) and (C), corresponding to 1D
plots of the calculated (black) and measured (purple) scaled joint Wigner function along Re(bA) = Re(bB)
with Im(bA) = Im(bB) = 0. (F) Diagonal line-cuts of the data shown in (B) and (D), corresponding to 1D plots
of the calculated (black) and measured (purple) scaled joint Wigner function along Im(bA) = Im(bB), with
Re(bA) = Re(bB) = 0.
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operations of photons one by one and so far
has been limited to five photons (25, 26). The
two components of the cat state shown here
are separated by a distance of

ffiffiffiffiffi

30
p

in the 4D
phase space, giving a cat size (5) of 30 photons.
Our technique in principle allows generation of
two-mode cat states with arbitrary size. So far,
we have measured cat sizes of up to 80 photons
(14), andmoremacroscopic states can be achieved
by implementing numerically optimized con-
trol pulses.
Compared with single-cavity quantum states,

the addition of the second cavity mode increases
the quantum information capacity significantly.
Despite themodestmean photon numbers, a full
tomography of the two-mode cat state (partly
shown in Fig. 3) requires a Hilbert space of at

least 100 dimensions to be described (capturing
99% of the population), comparable to a six- or
seven-qubit Greenberger-Horne-Zeilinger (GHZ)
state. Our conservatively estimated quantum state
fidelity is comparable to that reported for an
eight-qubit GHZ state in trapped ions (10) and
the largest GHZ state in superconducting circuits
(five qubits) (11).
An important motivation for creating multi-

cavity cat states is to implement a promising
paradigm toward fault-tolerant quantum com-
putation (7, 8), where information is redundantly
encoded in the quasi-orthogonal coherent state
basis (6). This approach has recently led to the
first realization of quantum error correction of a
logical qubit achieving the break-even point (9).
In this context, our experiment realizes an ar-

chitecture of two coupled logical qubits, where
the coherent states jTai in each of the two cav-
ities represent j0i and j1i of a logical qubit. For
any two-qubit logical state encoded in this sub-
space,wecanperformefficient tomographywithout
extensivemeasurement of the jointWigner func-
tion. This is carried out by measuring PJ ðbA; bBÞ
at 16 selected points (14). The encoded two-qubit
tomography of a state jyþiwith a = 1.92 is shown
in Fig. 4A, providing a direct fidelity estima-
tion (27) of 1

4 ðhI^I^i þ hX^X^i−hY^Y^i þ hZ^Z^iÞ ¼ 78%
against the ideal Bell state, surpassing the 50%
bound for classical correlation. As a compari-
son, Fig. 4B illustrates a product state of single-
mode cat states in Alice and Bob, equivalent to
j−XiAj−XiB in the logical space. For both states
illustrated here, the two-qubit tomography sug-
gests that errors within the encoded space are
quite small. The reduced overall contrast, as
indicated by the measured identity operator
smaller than 1, can be attributed to the infidelity
of the joint parity measurement and leakage from
the code space (due to higher-order Hamiltonian
terms).
We have demonstrated a Schrödinger’s cat

that lives in two cavities. This two-mode cat state
is not only a manifestation of mesoscopic super-
position and entanglement constructed from
quasiclassical states (15) but also a resource
for quantummetrology (28), quantum networks,
and teleportation (29). Moreover, the demonstra-
tion of high-fidelity quantum control over the
large two-cavity Hilbert space has important
implications for continuous-variable-based quan-
tum computation. The measurement of the joint
photon number parity realized here is QND by
design and will play a central role in quantum
error correction (7, 9, 19) and facilitating concur-
rent remote entanglement (30) in a modular ar-
chitecture of quantum computation.
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QUANTUM SIMULATION

Experimental reconstruction
of the Berry curvature in a
Floquet Bloch band
N. Fläschner,1,2* B. S. Rem,1,2* M. Tarnowski,1 D. Vogel,1 D.-S. Lühmann,1

K. Sengstock,1,2,3† C. Weitenberg1,2

Topological properties lie at the heart of many fascinating phenomena in solid-state systems
such as quantum Hall systems or Chern insulators.The topology of the bands can be captured
by the distribution of Berry curvature, which describes the geometry of the eigenstates
across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we
engineered the Berry curvature of the Bloch bands using resonant driving and show a full
momentum-resolved measurement of the ensuing Berry curvature. Our results pave the way to
explore intriguing phases of matter with interactions in topological band structures.

T
opology is a fundamental concept for our
understanding of many fascinating sys-
tems, such as topological superconductors
or topological insulators, which conduct
only at their edges (1). The topology of the

bulk band is quantified by the Berry curvature
(2), the integral of which over the full Brillouin
zone is a topological invariant called the Chern
number. According to the bulk boundary corre-
spondence principle, the Chern number deter-
mines the number of chiral conducting edge
states (1). Although edge states have been di-
rectly observed in a variety of lattice systems—
ranging from solid-state systems to photonic
waveguides, and even coupled mechanical pen-
dula (3–7)—the underlying Berry curvature as the
central measure of topology is not easily acces-
sible. In recent years, ultracold atoms in optical
lattices have emerged as a platform with which
to study topological band structures (8, 9), and

these systems have seen considerable experimen-
tal and theoretical progress.Whereas in condensed-
matter systems, topological properties arise thanks
to external magnetic fields or intrinsic spin-orbit
coupling of the material, in cold atom systems
they can be engineered by periodic driving anal-
ogous to illuminated graphene (10, 11). The re-
sulting Floquet system can have topological
properties very different from those of the origi-
nal system (12). The driving can, for example, be
realized through lattice shaking (13–17) or Raman
coupling (18–20) with high-precision control in a
large parameter space. In particular, the driving
can break time-reversal symmetry (14, 15, 17) and
thus allows for engineering nontrivial topology
(17, 19). In quantum gas experiments, topological
properties have been probed via the Hall drift of
accelerated wave packets (17, 19), via an interfer-
ometer inmomentum space (21, 22), and via edge
states (23, 24), but so far, the full underlying Berry
curvature was not measured quantitatively.
We measured the Berry curvature with full

momentum resolution based on a method pro-
posed in (25, 26).We performed a full tomography
of the Bloch states across the entire Brillouin zone
by observing the dynamics at each momentum
point after a projection onto flat bands. The topo-
logical bands were engineered through resonant

dressing of the two lowest bands of an artificial
boron nitride lattice and feature a rich distribution
of Berry curvature. Other relevant quantities such
as the Berry phase or the Chern number can easily
be obtained from theBerry curvature, which is thus
the central concept for the description of topology.
Our system consists of ultracold fermionic atoms

in a hexagonal optical lattice (27) formed by three
interfering laser beams. With an appropriate polar-
ization (28), a variable energy offset hDAB between
the A and B sites (Fig. 1A), which breaks inversion
symmetry, can be engineered. With the emerging
bandgaphvAB, theDirac points atKandK′become
massive, and for a large offset, the bands are flat
(Fig. 1B) (28). This is a key ingredient for our to-
mography, because the flat band acts as the ref-
erence frame in which we reconstruct the eigen
states. Then as a central experimentalmethod, we
could accelerate the lattice on circular trajectories
in real space by modulating the phases of the
three lattice beams, thus realizing circular shaking
(13–17). When the shaking frequency is near reso-
nant with respect to a band transition, the two
bands couple and form two new dressed Floquet
bands. In Fig. 1C, we show the dressed Floquet
bands for different accessible driving amplitudes.
Apart from the dramatic change in the dispersion
relation, the topological properties of the bands
are changed. This manifests itself in the creation
of a new Dirac point at the G-point and the an-
nihilation of a Dirac point at the K point (Fig. 1D).
A threefold symmetry also becomes visible in the
dispersion relation (Fig. 1E).
The topological properties are not captured by

the mere dispersion relation but by the Berry
curvature, which describes the winding of the
eigenstates across the Brillouin zone. Therefore,
a complete tomography of the eigenstates of a
Bloch band is mandatory for a measurement of
the Berry curvature. The key idea behind our
tomography is to reconstruct the eigenvectors
from dynamics after a projection onto flat bands
(26). Consider the Bloch sphere (Fig. 2A), whose
poles are given by jk;Ai and jk;Bi, which are the
Bloch states restricted to the A and B sublattice,
respectively. The lower band can be written as
jki ¼ sinðqk=2Þjk;Ai − cosðqk=2ÞexpðifkÞjk;Bi,
and after a projection onto flat bands, the state
oscillates around jk;Bi, with the frequency vk
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information processing.
ability to share quantum states in different locations could be a powerful resource for quantum 
shared by two separated cavities. Going beyond common-sense absurdities of the classical world, the
cat from coherent microwave photons, they show that the state of the ''electromagnetic cat'' can be 

 now show that the cat can be in two separate locations at the same time. Constructing theiret al.Wang
invoked to illustrate the how peculiar the quantum world can be. On a twist of the dead/alive behavior, 

The story of Schrödinger's cat being hidden away in a box and being both dead and alive is often
Quantum cats here and there
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