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High-fidelity qubit measurements play a crucial role in quantum computation, communication, and metrology.
In recent experiments, it has been shown that readout fidelity can be improved by performing repeated quantum
nondemolition (QND) readouts of a qubit’s state through an ancilla. For a qubit encoded in a two-level system, the
fidelity of such schemes is limited by the fact that a single error can destroy the information in the qubit. On the
other hand, if a bosonic system is used, this fundamental limit can be overcome by utilizing higher levels such that
a single error still leaves states distinguishable. In this work, we present a robust readout scheme which leverages
both repeated QND readouts and higher-level encodings to asymptotically suppress the effects of mode relaxation
and individual measurement infidelity. We calculate the measurement fidelity in terms of general experimental
parameters, provide an information-theoretic description of the scheme, and describe its application to several
encodings, including cat and binomial codes.
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I. INTRODUCTION

The ability to measure a qubit with high fidelity is of
great importance in quantum computation [1,2] and metrology
[3,4], as well as in measurement-based feedback control [5–10]
and computation [11–13]. Experimentally, much progress has
been made in recent years toward realizing high-fidelity qubit
measurement. High-fidelity single-shot measurements have
been demonstrated in a wide variety of physical systems,
including nitrogen-vacancy centers [14–16], superconducting
circuits [17–19], and quantum dots [20–22]. Qubit relaxation is
often a limiting factor in such experiments, and in systems with
longer qubit lifetimes higher readout fidelities are possible.
Indeed, in trapped ions—known for their long coherence
times—readout fidelities in excess of 99.9% [23,24] and even
99.99% [25,26] have been demonstrated experimentally.

While this experimental progress is encouraging, strategies
to further improve qubit readout fidelity are of great interest.
One such strategy involves coupling the primary qubit to an an-
cillary readout qubit. Measurements are performed by mapping
the system’s state onto the ancilla, whose state is then read out.
These measurements are said to be quantum nondemolition
(QND) if the system’s measurement eigenstates are unaffected
by the ancilla readout procedure. QND measurements are
necessarily repeatable, and the overall measurement fidelity
can be improved by repeating measurements to suppress indi-
vidual measurement infidelity (Fig. 1). Highly QND readouts
have already been realized in trapped-ion systems [27,28],
nitrogen vacancy centers [9,29,30], and circuit QED systems
[10,31–36].

For a qubit encoded in a two-level system, the fidelity of
such repeated readout procedures is fundamentally limited by
the fact that there exist single errors, such as relaxation of the
excited state to the ground state, that can destroy the infor-
mation in the qubit. This fundamental limit can be overcome,
however, by robustly encoding the information within a larger

Hilbert space, so that single errors leave states distinguishable.
The combination of repeated QND measurements and robust
encoding thus enables one to overcome limits imposed by both
individual measurement infidelity and qubit relaxation.

In this work we propose a robust readout scheme for
bosonic systems in the dispersive coupling regime—a class
of systems where information can be both encoded robustly
and read out in a QND way. The infinite-dimensional Hilbert
space of a single bosonic mode (quantum harmonic oscillator)
provides room to encode information and protect it from
errors [37–39], while the mode’s dispersive coupling to an
ancillary quantum system enables repeated QND readout
[33,40–43]. We show explicitly how the combination of these
two techniques allows one to simultaneously suppress the
contributions to readout infidelity from qubit relaxation and
individual measurement noise to higher order, potentially
yielding orders-of-magnitude improvement in readout fidelity.

This scheme is applicable to a variety of systems where
bosonic modes, typically in the form of photons or phonons,
are naturally available. Circuit QED systems, where the strong
dispersive regime is experimentally accessible [42,44,45],
provide one example. Other examples include optomechani-
cal systems, where dispersive couplings necessary for QND
readout have been demonstrated [46,47], and in principle
also nanomechanical systems [48,49] or circuit quantum
acoustodynamic systems [50,51], provided sufficiently strong
couplings and long mode lifetimes can be engineered. More
broadly, this scheme can be applied in any system where a
bosonic mode has a strong dispersive coupling to an ancilla,
so it can even be applied to more exotic systems, e.g., quantum
magnonics, where strong dispersive couplings were recently
demonstrated [52].

This article is organized as follows. In Sec. II we use
a simple Fock state encoding to introduce the robust read-
out scheme for a lossy bosonic mode dispersively coupled
to a two-level readout ancilla. This encoding serves as a
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FIG. 1. Repeated QND readouts. Contributions to overall mea-
surement infidelity from ancilla preparation or readout errors and
noise can be exponentially suppressed by repeating measurements.

straightforward example of an encoding suited to robust
readout, and its analysis (Secs. II–V) is intended to make
the ideas underlying the robust readout scheme abundantly
clear. With this encoding, we explicitly compute the readout
infidelity and show that contributions from relaxation and
individual measurement noise are suppressed. In Sec. III we
generalize the readout scheme so that contributions to the
infidelity from spontaneous heating are also suppressed. In
Sec. IV we show how, given a readout ancilla with more than
two levels, readout fidelity can be significantly improved by
using a maximum likelihood estimate as opposed to simple
majority voting. In Sec. V, we consider the robust readout
scheme from the perspective of classical information theory
and place a lower bound on readout infidelity. This concludes
our analysis of the Fock state encoding. We consider other
encodings in Sec. VI, which contains the main results of this
article. We identify criteria on encodings that are sufficient
for robust, ancilla-assisted readout of a qubit encoded in a
lossy bosonic mode, and as examples, we explicitly show that
these criteria are satisfied by cat codes and binomial codes. We
approximate the readout fidelity for both codes.

II. ROBUST READOUT OF A QUBIT ENCODED
IN A LOSSY BOSONIC MODE

A. Robust readout scheme

Let a bit of quantum information be encoded in a bosonic
mode as |ψ〉B = α|0〉B + β|1〉B , where |0〉B and |1〉B are the
“logical” states in the mode’s Hilbert space that we seek
to distinguish with maximal fidelity. Readout of this qubit
(henceforth referred to as the bosonic qubit) is performed by
repeatedly mapping its state onto a two-level ancillary quantum
system, whose state is subsequently measured. The mapping
and ancilla readout processes are assumed to be QND so that
they can be repeated without disturbing the bosonic qubit. This
assumption is justified in the dispersive coupling regime, as
will be shown explicitly.

We refer to the process of mapping the bosonic qubit onto
the ancilla, followed by ancilla readout, as a level-1 readout.
Each level-1 readout yields one classical bit of information
(the ancilla is either found to be in |g〉 or |e〉). In our
scheme, N repeated level-1 readouts are performed, and their
outcomes are collectively analyzed, e.g., with majority voting,
to yield a single bit of classical information (the bosonic
qubit is determined to be in either |0〉B or |1〉B). We refer
to the entire procedure—performing N level-1 readouts and
combining the results—as a level-2 readout. This scheme is
shown schematically in Fig. 2(a).

We now define the logical states, the specific mapping
required for this scheme, and the relaxation properties of the
bosonic mode, all of which are summarized in Fig. 2(b). The
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FIG. 2. Robust readout scheme. (a) Quantum circuit for the
readout scheme. The state of the bosonic qubit is read out through
repeated QND mappings of its state onto an ancilla. (b) The bosonic
mode and mapping procedure. Fock states in the bosonic mode decay
with rates proportional to their excitation number. All excited states
are mapped to the excited state of the two-level readout ancilla. (c)
Schematic of a circuit QED system. The state of a microwave cavity
mode can be read out via a dispersive coupling to a transmon qubit.
The transmon is measured via its coupling to some other device,
typically a resonator or cavity. Realistic parameter values for this
architecture (cf. Refs. [53–55]) are shown in the table (see Sec. II B
for parameter definitions).

logical states encoding the bosonic qubit are chosen to be the
Fock states

|0〉B = |0〉,
|1〉B = |L〉, (1)

for positive integer L. We make three remarks on this choice
of encoding. First, the reason that we begin by considering
this “Fock code” is that the analysis of its readout fidelity is
straightforward, so the code serves as an instructive example.
Second, we note that the Fock code has previously been used
in quantum information processing applications. For example,
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the initialization [53–58] and manipulation [54] of qubits with
this encoding have been demonstrated experimentally. Third,
the Fock code is a quantum error-detecting code, capable of
detecting excitation loss errors for L > 1. Thus, this code could
be useful in a concatenated encoding scheme, for example,
since the ability to detect errors at one level enables more
efficient correction of errors at the next level of encoding [2].
Other possible choices of the logical states, including quantum
error-correcting codes like the cat and binomial codes, are
considered in Sec. VI.

In the dispersive coupling regime, the logical states (1)
can be distinguished through a measurement procedure that
is QND. In this work we consider projective measurements
and define QND as follows. A projective measurement can be
described by a collection of measurement operators {M̂k} that
constitute a complete set of orthogonal projectors, satisfying
M̂2

k = M̂k and
∑

k M̂k = 1. Such a measurement is QND if

[M̂k, Ĥ (t )] = 0, (2)

for all k and t , where Ĥ (t ) is an operator describing the
ancilla preparation, its coupling to the bosonic mode, and
the ancilla readout. In the robust readout scheme, the level-1
measurements are defined by operators M̂0 and M̂1 that act on
the Hilbert space of the bosonic mode

M̂0 = |0〉〈0|,
M̂1 = |1〉〈1| + · · · + |L〉〈L|. (3)

For a bosonic mode dispersively coupled to a two-level ancilla,
QND measurements are possible because these operators
commute with the dispersive coupling Hamiltonian,

HDC/h̄ = −χ â†â|e〉〈e|, (4)

where |g〉 and |e〉 denote the basis states of the ancilla, and â is
the bosonic annihilation operator. Similar QND measurements
have already been demonstrated experimentally in circuit QED
systems [31].

During the mapping process, the bosonic state |0〉 (|L〉) is
mapped to the ancilla state |g〉 (|e〉), while all intermediate
Fock states |0 < n < L〉 are mapped to the ancilla state |e〉.
Experimentally, this mapping can be realized by initializing
the ancilla in the ground state, then utilizing the dispersive cou-
pling to apply a collection of selective pulses [31,44,56,59,60]
at frequencies (ωge − kχ ) for k = 0, 1, . . . , L, where ωge is
the bare frequency of the ancilla qubit. These pulses, which
can be applied simultaneously, flip the ancilla to the excited
state only if the bosonic mode state is |1〉, |2〉, . . ., or |L〉. As
a simpler alternative, a single selective pulse can be applied at
ωge to flip the qubit conditioned on whether the bosonic mode
is in |0〉. The only difference between this latter procedure and
the mapping in Fig. 2(b) is that the roles of the ancilla states
are reversed—a trivial change in bookkeeping.

Because readouts are frequently limited by qubit lifetime,
we consider a bosonic mode that is subject to spontaneous
relaxation. Specifically, the decay rate of a Fock state |n〉
to |n − 1〉 is given by nκ↓, where the factor of n is due to
bosonic enhancement. Transitions between nonadjacent Fock
states are suppressed by selection rules, and excitations will be
considered later in Sec. III.

As a figure of merit for this readout scheme, the readout
fidelity F is defined as [19,61]

F = 1 − P (0B |1B ) − P (1B |0B ), (5)

where P (i|j ) is the probability of the level-2 readout yielding
i when the initial state of the bosonic qubit was j , for i, j ∈
{|0〉B, |1〉B}. F varies continuously from 0, for readouts which
yield no information about the initial state, to 1, for perfect
readouts. In the robust readout scheme, both P (0B |1B ) and
P (1B |0B ) are suppressed by increasing L and N , as is shown
quantitatively in the following sections.

Finally, to make the following analysis more concrete, in
Fig. 2(c) we show an example of a real system where the
robust readout scheme can be applied—a circuit QED system.
In this system, a microwave cavity mode (the bosonic mode)
dispersively couples to a transmon qubit (the ancilla), and this
coupling can be used to perform repeated QND measurements
of the cavity state [10,31–33]. For a qubit stored in the cavity
mode with a suitable encoding (e.g., with the Fock, cat, or
binomial codes), it will be shown that contributions to readout
infidelity from cavity decay, mapping errors, and transmon
readout errors can all be suppressed to higher order with this
scheme.

B. Discrete model of the robust readout scheme

A Hidden Markov Model (HMM) is used to model the
robust readout scheme of Fig. 2. A HMM is a Markov chain
where, instead of being able to observe a system’s state directly,
the only information about the system is provided by a series of
noisy emissions. HMMs have been previously used as effective
models of qubit readout [62–65]. In our case, a discrete model
(Fig. 3) is used where each level-1 readout is modeled as
a possible transition, representing the bosonic qubit’s decay,
followed by a noisy emission, representing the mapping and
the readout of the ancilla.

The model is parameterized by transition probabilities Tij

and emission probabilities Eij . The transition probability Tij is
defined to be the probability that the bosonic state |i〉 transitions
to |j 〉 during a single level-1 readout, with i, j ∈ {0, 1, . . . , L}.
The emission probability Eij is the probability that the bosonic
system, having transitioned to state |i〉, with i,∈ {0, 1, . . . , L},
is read out as ancilla state |g〉 for j = 0, or |e〉 for j = 1. The
emission probabilities are defined in terms of the probability δ

that an error occurs during the mapping and readout processes
which causes the ancilla readout to be misleading

Eij =
{

1 − δ, if i = j = 0 or i > 0, j = 1,

δ, otherwise. (6)

In cases where different Fock states have different probabilities
of producing misleading ancilla readouts, taking δ to be the
largest of these probabilities will yield a conservative estimate
of readout fidelity.

Explicit expressions for transition probabilities Tij are
derived from the bosonic decay rates. Consider a population
of quantum harmonic oscillators, with pi (t ) of the oscillators
in Fock state |i〉 at time t . The system of differential equations
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FIG. 3. Hidden Markov Model for the robust readout scheme.
(a) Markov chain and emissions. At each step of the HMM the
bosonic system transitions to a new state and releases an emission.
Here Bn denotes the bosonic mode state after step n, and An denotes
the nth ancilla measurement outcome. (b) Transition and emission
probabilities. Transitions and emissions are shown diagrammatically
for the case L = 2, where the matrix elements along the arrows
are the associated probabilities. Bolded arrows indicate the intended
mappings.

describing the time evolution of the populations is

ṗi (t ) =
L∑

j=0

(K↓)ij pj (t ), (7)

where (K↓)ij is the transition rate from state |j 〉 to |i〉. For
bosonic systems,

(K↓)ij =
⎧⎨
⎩

−j κ↓, i = j

j κ↓, i = j − 1
0, otherwise.

(8)

This system has the solution p(t ) = eK↓t p(0). The transition
probabilities for a level-1 readout taking time τ are thus
obtained by explicitly computing the matrix elements of eK↓τ ,

Tij (τ ) = (eK↓τ )ji =
(

i

j

)
(eκ↓τ − 1)i−j e−iκ↓τ . (9)

As an aside, we note that both τ and δ can depend implicitly
on the strength of the dispersive coupling χ . For example,
larger coupling strengths can enable faster or more selective
pulses. The values of τ and δ given in Fig. 2(c) are estimated
from the given χ value based on such considerations. In order
to keep the following discussion general, however, we do not
assume a particular functional dependence of either of these
parameters on χ .

To provide intuition as to why increasing the number of
levels L can improve the readout fidelity, we calculate the
expected value of the time τ0 which it takes initial state |L〉
to decay to |0〉,

〈τ0〉 =
∫ ∞

0
dτ τ

d

dτ
TL0(τ ) = 1

κ↓

L∑
n=1

1

n
. (10)

Because τ0 grows with L, so too does the effective signal
lifetime, thereby improving readout fidelity. Indeed, the ef-
fective lifetime diverges with L, though there are diminishing
returns in using higher levels because the divergence is only
logarithmic. Interestingly, it should be noted that using higher-
level encodings can improve readout fidelity even in the
absence of an increase in effective signal lifetime [66].

C. Readout infidelity in the discrete model

Using the HMM, we calculate the infidelity 1 − F of
the robust readout scheme in terms of the “experimental”
parameters δ and κ↓τ . This infidelity depends on how the level-
2 measurement outcomes are determined. We consider two
approaches: simple majority voting and a maximum likelihood
estimate (MLE).

In majority voting, each level-2 measurement outcome is
determined by tallying the N level-1 measurement outcomes,
with ancilla readouts of |g〉 (|e〉) counted as votes for initial
state |0〉 (|L〉). In the MLE, which is the statistically optimal
approach, the known values of the transition and emission
matrix elements are used to calculate which initial state was
more likely to have produced a series of observed ancilla
readouts. Explicitly, the likelihood λa(i) that a discrete set of
ancilla readouts an ∈ {g, e}, for n ∈ {1, . . . , N}, was produced
with initial state |i〉 is

λa(i) =
∑

j1,...,jN

Ti,j1Ej1,a1 · · · TjN−1,jN
EjN ,aN

, (11)

which is efficiently calculable in O(NL2) operations [67].
The outcome of a level-2 measurement is then decided by
determining which of the two initial states was more likely
to have produced the emissions, i.e., by comparing λa(0) and
λa(L).

For both majority voting and the MLE classification strate-
gies, the infidelity is given exactly as a function of the
likelihoods

1 − F =
∑
a∈A0

λa(L) +
∑

a′∈AL

λa′ (0), (12)

where A0 (AL) is the set of ancilla readout vectors a which
are classified as initial state |0〉 (|L〉). Whether a given a falls
in either A0 or AL depends on the classification strategy. By
definition, the MLE chooses the sets A0 and AL to be those
which minimize the infidelity.

Plots of the infidelity as a function of N are shown in
Fig. 4 for both majority voting and the MLE. The values
of κτ and δ used in the figure are the same as those given
for the circuit QED system in Fig. 2(c), so the infidelities
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FIG. 4. Infidelity of the robust readout scheme. The infidelity is
plotted as a function of the number of measurements N for L = 1 and
2, with the parameter choices δ = 2% and κ↓τ = 1%. The solid lines
denote the approximate majority voting infidelity (14), while circles
and squares respectively denote exact calculations for the majority
voting and MLE schemes. Inset: the minimum attainable infidelity is
plotted as a function of L.

shown in the main panel are realistically attainable. Notably,
the minimum infidelity attained by both majority voting and the
MLE decreases by over an order of magnitude as L increases
from 1 to 2. Indeed, the inset shows that increasing L can lead to
multiple orders of magnitude improvement. It is also clear that
the MLE can dramatically outperform majority voting as N

increases. This discrepancy is due to decays: majority voting
weights all votes equally, even those that are recorded long
after initial state |L〉 is likely to have decayed to |0〉. The
minimal infidelities attained by the two methods, however,
are not significantly different, meaning that simple majority
voting is a near-optimal strategy until decays begin to play a
significant role.

To compute the exact infidelity, it is necessary to enumerate
all possible combinations of N level-1 readouts and to compute
the likelihoods of each, a computation which takes O(NL2 ×
2N ) operations. To provide a more accessible means of quickly
estimating the readout infidelity, and to elucidate its scaling, we
derive a simple approximation for the infidelity in the majority
voting scheme. The approximation depends on a small number
of general experimental parameters: the level-1 readout error
probability δ, the decay rate of the bosonic system κ↓, and the
level-1 readout time τ .

There are two dominant processes which are most likely to
fool the majority voting. The first is sufficiently quick decay
of the initial state |L〉 to |0〉, but with no level-1 readout
errors occurring. The second is a sufficient number of level-1
readout errors occurring so as to fool the voting, but with no
decays occurring. All other processes which fool the voting,
such as combinations of decays and level-1 readout errors,
have probabilities that are higher order in the parameters
δ or κ↓τ . We approximate the probabilities of incorrectly
identifying initial states by neglecting the contributions of these

higher-order processes,

P (0|L) ≈ TLL(Nτ ) ×
L∑

k=	N/2


(
N

k

)
δk (1 − δ)N−k

+ TL0(	N/2
τ ) × (1 − δ)N, (13a)

P (L|0) ≈
L∑

k=	N/2


(
N

k

)
δk (1 − δ)N−k, (13b)

where 	·
 denotes the ceiling function. Expanding to lowest
order in δ and κ↓τ gives

1 − F = P (0|L) + P (L|0),

≈ 2

(
N

	N/2

)

δ	N/2
 + (	N/2
κ↓τ )L. (14)

This approximation is valid when both Nδ � 1 and Nκ↓τ � 1
so that higher order terms can be neglected. This approximation
is plotted along with the exact result in Fig. 4, where the two
agree well because the approximation is valid in the regime
shown.

Equation (14) elucidates the benefit of combining robust
encoding with repeated measurement. In two-level systems,
such as trapped ions, the fidelity is limited by κ↓τ because
L = 1 is fixed. On the other hand, in multilevel systems where
repetitive QND readouts are not possible, the fidelity is limited
by δ because N = 1 is fixed. For bosonic systems in the
dispersive coupling regime, however, one has the freedom to
increase both L and N . Thus, both terms contributing to the
infidelity are suppressed to higher order, and readout is no
longer theoretically limited by either individual measurement
errors or relaxation. This is the strength of the robust readout
scheme.

III. ROBUST READOUT WITH BOTH RELAXATION
AND HEATING

We now consider the case where the bosonic mode is subject
to heating, defined here as a nonzero excitation rate κ↑. Without
modification, the readout fidelity of the above scheme would be
limited by the probability of the initial state |0〉 spontaneously
exciting to |1〉, a process which is first order in κ↑τ . In this
section, we generalize the scheme so that contributions to the
infidelity from heating are also suppressed to higher orders.

The modified readout scheme is shown in Fig. 5, where
the excitation rate1 between the adjacent Fock states |n〉 and
|n + 1〉 is nκ↑. To account for this heating, we define a
threshold state |m〉 such that the mapping from the bosonic
mode to the ancilla is

|n〉 →
{|g〉, n � m

|e〉, n > m.
(15)

This mapping can be implemented by initializing the ancilla in
the ground state, then applying selective pulses at frequencies

1In order to study the fidelity with a finite HMM, we truncate the
Hilbert space to the first L + 1 Fock states, taking the heating rate
from |L〉 to |L + 1〉 to be 0. It is safe to neglect the additional levels
when κ↑τ � κ↓τ � 1.
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FIG. 5. Robust readout scheme for relaxation and heating. De-
cays and excitations occur between adjacent Fock states with rates
proportional to the excitation number. All Fock states |n > m〉 are
mapped to the excited state of the two-level ancilla.

(ωge − kχ ) for k = m + 1,m + 2, . . . , L. These pulses flip
the ancilla from |g〉 to |e〉 only if the bosonic mode state
is |m + 1〉, |m + 2〉,..., or |L〉. The level-1 readouts are then
described by the measurement operators

M̂0 =
m∑

k=0

|k〉〈k|,

M̂1 =
L∑

k=m+1

|k〉〈k|. (16)

For m > 0, the contribution to the infidelity from heating of
the initial state |0〉 will thus be suppressed to higher order in
κ↑ because multiple excitations are required for |0〉 to heat to
a state which is mapped to ancilla state |e〉.

As in the previous section, this scheme is quantitatively
analyzed with a HMM. The emission probabilities Eij are sim-
ilarly defined in terms of the level-1 readout error probability
δ as

Eij =
{

1 − δ, if i � m, j = 0 or i > m, j = 1,

δ, otherwise. (17)

The transition probabilities Tij are calculated as functions
of the decay and excitation rates. The system of differential
equations describing the time-evolution of the Fock state
populations is

ṗi (t ) =
L∑

j=0

(K↓ + K↑)ij pj (t ), (18)

where K↑ has matrix elements

(K↑)ij =
⎧⎨
⎩

−(j + 1) κ↑, i = j < L

(j + 1) κ↑, i = j + 1
0, otherwise.

(19)

The transition probabilities are then given as a function of the
level-1 readout time τ ,

Tij (τ ) = [e(K↓+K↑ )τ ]ji . (20)

Approx.

Voting

MLE

−

−

−

−

−

L = 1, m = 0

L = 2, m = 0

L = 3, m
= 1

L = 4, m = 1

−
−
−
−

( − )

FIG. 6. Infidelity of the robust readout scheme with both relax-
ation and heating. The infidelity is plotted as a function of the number
of measurements N for L = 1, 2, and 3, with the parameter choices
δ = 2%, κ↓τ = 1%, and κ↑τ = 0.5%. Inset: the minimum attainable
infidelity is plotted as a function of L. For m = 0 (red) the infidelity
asymptotes to a finite value, but for optimal m (black) it continues to
decrease.

Exact calculations of the infidelity proceed as in the pre-
vious section. We also approximate the infidelity by again
considering only the dominant error processes, now including
the probability that initial state |0〉 heats to |m + 1〉, with no
level-1 readout errors occurring. With this additional term, the
level-2 readout error probabilities are approximately given by

P (0|L) ≈ TLL(Nτ )
L∑

k=	N/2


(
N

k

)
δk (1 − δ)N−k

+ (1 − δ)N (eK↓	N/2
τ )m,L, (21a)

P (L|0) ≈ T00(Nτ )
L∑

k=	N/2


(
N

k

)
δk (1 − δ)N−k

+ (1 − δ)N (eK↑	N/2
τ )m+1,L. (21b)

To lowest order in δ, κ↓τ , and κ↑τ , the infidelity is

1 − F ≈
(

L

m

)(⌈
N

2

⌉
κ↓τ

)L−m

+
(⌈

N

2

⌉
κ↑τ

)m+1

+ 2

(
N

	N/2

)

δ	N/2
. (22)

It is clear that, within this approximation, all contributions to
the infidelity are suppressed to higher orders in κ↓τ , κ↑τ , and
δ, by increasing L, m, and N , respectively.

Plots of the infidelity with both majority voting and the MLE
are shown in Fig. 6. Though the heating rates κ↑ of physical
systems are typically much smaller than the decay rate κ↓ (e.g.,

022305-6



ROBUST READOUT OF BOSONIC QUBITS IN THE … PHYSICAL REVIEW A 98, 022305 (2018)

|0
|1
|2

|L

...

|L − 1

κ↓

2κ↓

Lκ↓

|m + 1

|m

...

κ↑

2κ↑

Lκ↑

|0
|1
|2

|L
|L − 1

|m + 1

|m...
...

...
...

V
otes

for|0
V

otes
for|L}

}
|ψ B
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FIG. 7. Robust readout scheme for multilevel ancilla. (a)
Schematic description. Both decays and excitations occur between
adjacent bosonic mode Fock states. Each Fock state is mapped to
a unqiue ancilla state. In the majority voting all ancilla readouts of
|n > m〉 are counted as votes for |L〉, while readouts of |n � m〉 are
counted as votes for |0〉. (b) Mapping circuit. Fourier gates on the
ancilla, in combination with evolution under the dispersive coupling,
implement the mapping used in the QND measurement.

Ref. [68]), the two are chosen to be comparable in the plot so
that the importance of the threshold state is apparent. For the
parameters shown in the figure, m = 0 is the optimal choice of
the threshold for L � 2, but at L = 3 the optimal choice is m =
1. In the inset, the minimum majority voting infidelity is plotted
as a function of L for both fixed m = 0 (red) and the optimal
choice of m (black). It is clear that without increasing m the
readout infidelity is limited by the first-order heating process,
but when m is allowed to increase it is again possible to improve
readout fidelity by orders of magnitude. We also note that here
again the optimal MLE and majority voting infidelities do not
differ significantly.

IV. ROBUST READOUT WITH A MULTILEVEL ANCILLA

There exist experimental systems where a bosonic mode
can be dispersively coupled to an ancilla with more than
two levels. Circuit QED systems provide one example; the
higher excited states of a superconducting transmon qubit have
been populated and measured in experiment [69,70]. We now
consider a version of the robust readout scheme applicable to
such systems and show that the use of a multilevel ancilla can
lead to significant improvements in readout fidelity when the
MLE is used.

The readout scheme for this case is shown in Fig. 7. As
before, nonzero decay and excitation rates are assumed, but in

this case the level-1 measurement operators are

{M̂k = |k〉〈k|, for k = 0, 1, . . . , L}. (23)

The threshold state |m〉 is used only to determine which of the
L + 1 possible ancilla state readouts are counted as votes for
initial bosonic state |0〉 or |L〉 in the majority voting scheme.
It plays no role in the MLE.

A circuit that uses the dispersive coupling to implement
the mapping from the bosonic mode to the ancilla is shown in
Fig. 7(b) [71]. The ancilla is initialized in the ground state, and
a Fourier gate F̂L+1 maps this state to an even superposition
of the first L + 1 Fock states. For a bosonic mode dispersively
coupled to an (L + 1)-level ancilla, the coupling Hamiltonian
is

ĤDC/h̄ = −
L∑

j=0

j χ |j 〉〈j |â†â, (24)

where |j 〉 are the ancilla states. The bosonic mode and ancilla
are allowed to evolve under this coupling for a time t =
2π/(L + 1)χ , implementing the unitary

ÛDC = ei
2πj

L+1 |j〉〈j |â†â , (25)

after which the application of the gate F̂
†
L+1 completes the

mapping of the bosonic mode’s excitation number onto the
ancilla. With this mapping, the measurement procedure is QND
because the measurement operators M̂k commute with the
dispersive coupling.

As a practical matter, we note that, since the number of
excitations in the bosonic mode is not known a priori, the
dispersive coupling causes an unknown shift of the ancilla
transition frequencies. However, this unknown frequency shift
does not pose a barrier to implementing the Fourier gates in
Fig. 7(b). If we can drive the ancilla with strength � much
larger the dispersive coupling χ , the standard control pulse has
a small error decreasing with the driving strength as (Lχ/�)2.
Moreover, dispersive coupling induced ancilla gate errors can
be further suppressed to even higher order using composite
pulses [72] or numerically optimized control pulses [73,74].

The HMM transition probabilities Tij are the same as in the
previous section, but it is necessary to redefine the emission
probabilities Eij to incorporate the L + 1 possible ancilla
readouts. We define the emission matrix elements

Eij =
{

(1 − δ), for i = j

δ/L, otherwise. (26)

This choice2 is made so that δ remains an easily measurable
parameter: given the ability to reliably prepare an initial Fock
state, (1 − δ) is measurable as the probability that the state is
correctly read out as the corresponding ancilla state.

As before, the infidelity of the level-2 readout for both the
majority voting and MLE is exactly calculable with the HMM.
We also approximate the infidelity for the majority voting

2Note that with this definition δ is no longer the probability of
obtaining a misleading readout. As a result, expressions involving δ in
this section are not directly comparable to those in previous sections.
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FIG. 8. Infidelity of the robust readout scheme with multilevel
ancilla. The infidelity is plotted with the parameter choices δ = 2%,
κ↓τ = 1%, and κ↑τ = 0.5%. The dashed line is a lower bound on the
fidelity determined through information-theoretic considerations (see
Sec. V).

scheme:

1 − F ≈
(

L

m

)(⌈
N

2

⌉
κ↓τ

)L−m

+
(⌈

N

2

⌉
κ↑τ

)m+1

+
(

N

	N/2

){[

(m + 1)

L
δ

]	 N
2 


+
[

(L − m)

L
δ

]	 N
2 
}

(27)

Representative infidelities are plotted in Fig. 8. The most
salient feature of the plot is the discrepancy between the
minimum infidelities attained by the majority voting and the
MLE. Whereas in the previous cases the two were not found to
differ significantly, here the MLE is a clearly superior strategy.
This discrepancy is due to the fact that the majority voting uses
only binary information (votes for |0〉 or |L〉) to classify the
N level-1 outcomes. In contrast, the MLE can take any of the
L + 1 possible ancilla readouts as input and thus extracts more
information from each level-1 readout. With this additional
information, the MLE is able to more accurately determine
the initial state. We further explore an information-theoretic
description of the robust readout scheme in the next section.

V. INFORMATION-THEORETIC DESCRIPTION

In this section, we consider the fidelity of the robust readout
scheme from the perspective of classical information theory.
The initial state of the bosonic mode constitutes one bit3 of
information, and it is the goal of the robust readout scheme to
extract as much of this information as possible. By quantifying
the amount of information extracted, it is possible to place a
general lower bound on the readout infidelity.

3In this section, all logarithms are base 2.

We treat the initial state of the bosonic mode as a classical
discrete random variable B and suppose that initial states |0〉
and |L〉 are equally likely,

pB (b) = 1
2 , (28)

where b ∈ {0, L} is a realization of B. Similarly, we treat the
series of N ancilla readouts as a discrete random variable A.
The conditional probability distribution of A given B is given
by the likelihood

pA|B (a|b) = λa(b)

=
∑

j1,...jN

Tbj1Ej1a1 · · · TjN−1jN
EjN aN

, (29)

where a, an N -vector whose components are the ancilla
measurement outcomes, is a realization of A. (For a two-level
ancilla, ai ∈ {0, 1}, while for an (L + 1)-level ancilla ai ∈
{0, 1, . . . , L}.) We also calculate the remaining distributions
in terms of the likelihoods: the joint probability distribution
for A and B,

pAB (a, b) = 1
2λa(b); (30)

the marginal probability distribution for A,

pA(a) = λa(0) + λa(L)

2
; (31)

and the conditional probability distribution of B given A,

pB|A(b|a) = λa(b)

λa(0) + λa(L)
. (32)

The bosonic mode’s initial state contains one bit of infor-
mation, as quantified by the entropy H of random variable B,

H (B ) = −
∑

b

pB (b) log[pB (b)] = 1. (33)

The goal of the robust readout scheme is to indirectly extract as
much of this information as possible through random variable
A. The conditional entropy

H (B|A) = −
∑
a,b

pAB (a, b) log[pB|A(b|a)] (34)

quantifies the amount of uncertainty in B given A, and it
follows that the mutual information

I (A; B ) = H (B ) − H (B|A) (35)

quantifies the amount of information extracted through the
robust readout procedure.

These quantities are used to bound the readout fidelity. Con-
sider a classification process where one attempts to determine
B from A. Let B̂(A) be the guessed value of B. The probability
of an incorrect assignment P (B̂ (A) �= B ) ≡ pe is related to the
conditional entropy through Fano’s inequality,

H (B|A) � H2(pe ) + pe log(|B| − 1). (36)

Here B is the support of random variable B, and H2 is the
binary entropy,

H2(pe ) = −pe log(pe ) − (1 − pe ) log(1 − pe ). (37)
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Thus, Fano’s inequality places a lower bound on the infidelity
of the robust readout scheme (1 − F ) = 2 pe, and the bound is
calculable in terms of the relaxation and heating probabilities,
κ↓τ and κ↑τ , and the level-1 readout error probability δ.

This lower bound is shown in Fig. 8 for the case of L = 3.
This bound behaves similarly to the MLE, since the MLE
is the optimal classification strategy. Despite the fact that
the bound is not saturated, it is clear from the figure that
classical information theory provides a reasonable alternative
perspective from which the fidelity of the robust readout
scheme can be understood.

For completeness, we show why the MLE does not attain
the bound. The bound is saturated only if H (B|A) = H2(pe ),
since |B| = 2. Equivalently, this condition may be written as
H (E|A) = H (E), where E is the discrete random variable

E =
{

1, B̂ �= B

0, B̂ = B.
(38)

Qualitatively, H (E|A) = H (E) holds when A does not pro-
vide any information about whether a classification error will
happen, i.e., when classification errors are equally likely for
all realizations of A. This property does not generally hold for
the robust readout scheme since typically P (0|L) �= P (L|0).
This is a consequence of the asymmetry between relaxation
and heating rates, which enables one to be more confident in
a correct classification for some sequences of ancilla readouts
over others.

VI. ROBUST READOUT FOR BOSONIC ENCODINGS

Given a qubit stored in a bosonic mode as |ψ〉B = α|0〉B +
β|1〉B , we have thus far only considered readout using the Fock
state encoding:

|0〉B = |0〉,
|1〉B = |L〉. (39)

This choice was made for simplicity—with this encoding the
readout fidelity can be computed classically. While this error-
detecting code could be useful in a concatenated architecture
[2], it may not be ideal for more general applications. Thus, in
this section we consider alternate encodings. We develop a set
of sufficient encoding criteria for the robust readout procedure
to be applicable, show how these criteria are satisfied by cat
codes and binomial codes, and approximate the majority voting
readout fidelity for both encodings.

A. Encoding criteria

For a qubit encoded in a lossy bosonic mode as |ψ〉B =
α|0〉B + β|1〉B , we identify three encoding criteria that are
sufficient for robust, ancilla-assisted readout in the {|0〉B, |1〉B}
basis.

Criterion 1: Encodings must be robust against excitation
loss so that a single loss error cannot destroy all information
about the initial state. Explicitly, when subject to k excitation
losses, let the logical states |0〉B and |1〉B be respectively
mapped to error states |Ek

0〉 and |Ek
1〉. The encoding is said

to be robust against d excitation losses if〈
Ek

0 |E�
1

〉 = 0, for k and � ∈ {0, 1, . . . , d}, (40)

where |E0
0〉 (|E0

1〉) denotes |0〉B (|1〉B). For example, the Fock
state encoding (39) is robust against d = L − 1 excitation
losses. We note that this criterion is less stringent than the
Knill-Laflamme conditions for quantum error correction [75]
because we only need to protect a bit of classical information.

Criterion 2: The two logical states and their correspond-
ing error states must be distinguishable through an ancilla
readout procedure that is QND. For a projective measurement
described by {M̂k} that is capable of distinguishing these states,
the measurement is QND if

[Ĥ (t ), M̂k] = 0 for all k, (41)

where Ĥ (t ) is the Hamiltonian describing the readout pro-
cedure. The satisfaction of this criterion enables repeated
readouts. As an example, a measurement described by the
operators

M̂0 = |0〉B〈0|B + ∣∣E1
0

〉〈
E1

0

∣∣ + · · · + ∣∣Ed
0

〉〈
Ed

0

∣∣,
M̂1 = |1〉B〈1|B + ∣∣E1

1

〉〈
E1

1

∣∣ + · · · + ∣∣Ed
1

〉〈
Ed

1

∣∣ (42)

is capable of distinguishing the logical states and their cor-
responding error states, and it is QND if both M̂0 and M̂1

commute with Ĥ (t ). For the two-level ancilla readout proce-
dure of Sec. II, the measurement operators (3) commute with
the dispersive coupling Hamiltonian, thereby satisfying this
criterion.

Criterion 3: Ancilla errors must not induce damaging
changes in the bosonic mode’s state. Let possible ancilla errors
be described by a set of jump operators {Ĵ�}. For an ancilla error
occurring at time t during a level-1 readout, the evolution of
the combined system is described by the operator

Ĵ ′
�(t ) =T e− i

h̄

∫ τ

t
Ĥ (t ′ ) dt ′ Ĵ� T e− i

h̄

∫ t

0 Ĥ (t ′ ) dt ′ , (43)

where T denotes time ordering. We must have

[Ĵ ′
�(t ), M̂k] = 0, for all k and �, (44)

so that ancilla jumps do not affect measurement outcomes by
altering the bosonic mode state.

More concretely, for a d-level ancilla we consider the
possible ancilla errors

Ĵ ∈ {|n〉〈m|, for n �= m and n,m � d }, (45)

corresponding to spontaneous transitions of the ancilla state. In
the dispersive coupling regime, such jumps induce dephasing
of the bosonic mode that can be modeled as applications of
the operator Ĵ ′ ∼ n̂ and its higher powers [39,60]. Therefore,
we must have [n̂, M̂k] = 0 for this criterion to be satisfied, lest
readout fidelity be limited by the probability of spontaneous
ancilla transitions.

These three criteria are satisfied by the Fock state encoding
(39). We now show explicitly that the criteria are also satisfied
by cat codes and binomial codes, and we approximate the
fidelity of the robust readout scheme for both types of codes.

B. Cat codes

Cat codes [37,71,76,77] are quantum error correcting codes
designed to protect against excitation loss. Quantum error
correction with cat codes has recently reached the break-even
point where the lifetime of encoded qubits exceeds the lifetimes
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of all constituent components [10]. The codewords are formed
from equal superpositions of coherent states. Let the state |Cn

α〉
be defined as a superposition of 2L coherent states evenly
distributed around a circle in the bosonic mode’s phase space

∣∣Cn
α

〉 = 1

2L
√

Nn
α

2L−1∑
k=0

e−iknπ/L|eikπ/Lα〉, (46)

where Nn
α is a normalization factor [71]. These sates can be

expressed in terms of Fock states as

∣∣Cn
α

〉 = 1√
Nn

α

∞∑
m=0

e−|α|2/2αn+2mL

√
(n + 2mL)!

|n + 2mL〉F , (47)

where the subscript F is used in this section to distinguish Fock
states from coherent states. It is important to note that |Cn

α〉 is a
superposition of Fock states which all have the same excitation
number n modulo 2L. We define the logical states

|0〉B = ∣∣CL
α

〉
,

|1〉B = ∣∣C2L
α

〉
. (48)

Criterion 1. After k excitation loss events, the state |Cn
α〉

is mapped to |Cn−k
α 〉. The cat codes are robust against L − 1

excitation loss events since〈
CL−k

α |C2L−�
α

〉 = 0, for k, � � L − 1. (49)

Criterion 2. The cat code logical states and their corre-
sponding error states can be distinguished by measurement
of the excitation number modulo 2L. This measurement can
be described by the set of measurement operators {M̂k, k =
0, . . . , 2L − 1}, where

M̂k =
∞∑

m=0

|k + 2Lm〉〈k + 2Lm|. (50)

This measurement can be implemented using the dispersive
coupling ĤDC with a procedure similar to the one shown
in Fig. 7(b). Using Fourier gates on the 2L-level ancilla, in
combination with evolution under the dispersive coupling,
implement the unitary

Û = F̂
†
2Lei

2πj

2L
|j〉〈j |â†â F̂2L, (51)

which maps the bosonic mode’s excitation number modulo 2L

onto the ancilla. This measurement process is QND because
[ĤDC, M̂k] = 0 for all k.

Criterion 3. Spontaneous ancilla transitions during the
readout process do not induce damaging changes in the bosonic
mode’s state because the measurement operators M̂k commute
with dephasing errors n̂ for all k.

Fidelity. To approximate the fidelity of the majority voting
scheme we consider the two processes most likely to fool the
voting: (1) sufficient level-1 readout errors with no excitation
loss events, and (2) L excitation loss events occurring suffi-
ciently quickly with no level-1 readout errors. The probability
of process (1) can be computed in terms of δ, the probability
of obtaining a misleading level-1 readout, as in the previous
sections. To compute the probability of process (2), we first
note that the Kraus operator-sum representation for the lossy

bosonic channel [78] is

L(ρ̂) =
∞∑

k=0

Âk ρ̂ Â
†
k, (52)

where

Âk =
√

(1 − e−κ↓t )k

k!
e−κ↓t n̂/2âk (53)

is the Kraus operator corresponding to k excitation losses. The
probability of process (2) is the probability of initial state |Cn

α〉
suffering L excitation loss events in a time 	N/2
τ , which is
approximately given by

〈Â†
LÂL〉 ≈ (	N/2
κ↓τ )L

L!
〈â†LâL〉

≈ 1

L!
(|α|2	N/2
κ↓τ )L. (54)

To lowest order in δ and κ↓τ , the cat code readout fidelity Fcat

is thus given by

Fcat ≈ 1 − 2

(
N

	N/2

)

δ	N/2
 − 2

L!
(|α|2	N/2
κ↓τ )L. (55)

Within this approximation it is clear that both error terms are
suppressed to higher order. The contribution from individual
measurement infidelity is suppressed by increasing N , and the
contribution from excitation loss is suppressed by increasing
the number of coherent states comprising the cat state—
analogous to increasing the excitation number used in the Fock
state encoding.

C. Binomial codes

Binomial codes [39] are a class of quantum error correcting
codes that can protect against excitation loss and gain errors
as well as dephasing errors. The codewords are formed from
superpositions of Fock states weighted with binomial coeffi-
cients

|0〉B = 1√
2M−1

[0,M]∑
p even

√(
M

p

)
|pL〉,

|1〉B = 1√
2M−1

[0,M]∑
p odd

√(
M

p

)
|pL〉, (56)

where M and L are positive integers, and the range of the index
p is from 0 to M .

Criterion 1. The error state |Ek
0〉 is a superposition of Fock

states with excitation number L − k mod 2L, while error state
|E�

1〉 is a superposition with excitation number 2L − � mod
2L. Therefore, the binomial codes are robust against L − 1
excitation loss events since 〈Ek

0 |E�
1〉 = 0 for k and � between

0 and d.
Criterion 2. The binomial code logical states and cor-

responding error states can be distinguished by measuring
the excitation number modulo 2L. This measurement (50)
is the same as that considered for cat codes, and it is QND
by the same argument.
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Criterion 3. Spontaneous ancilla transitions during the
readout process do not induce damaging changes in the bosonic
mode’s state by the same argument as for cat codes.

Fidelity. We approximate the fidelity of a majority voting
scheme by considering the two processes most likely to fool
the voting. The argument here proceeds analogously to the one
given for cat codes, except that the probability of process (2)
is different for binomial codes. The probability that one of
the initial states (56) suffers L excitation loss events in a time
	N/2
τ is approximately given by

〈Â†
LÂL〉 ≈ (	N/2
κ↓τ )L

L!
〈â†LâL〉

≈ 1

L!

(
LM

2
	N/2
κ↓τ

)L

. (57)

To lowest order in δ and κ↓τ , the binomial code readout fidelity
Fbin is then given by

Fbin ≈ 1 − 2

(
N

	N/2

)

δ	N/2
 − 2

L!

(
LM

2
	N/2
κ↓τ

)L

.

(58)

As with the cat codes, it is clear that both error terms are
suppressed to higher orders.

VII. CONCLUSIONS

We have shown how the combination of robust encoding and
repeated QND measurements constitutes a powerful means of
improving qubit readout fidelity. Robust encodings allow one
to suppress contributions to the infidelity from relaxation, and
repeated QND measurements allow one to suppress contri-
butions from individual measurement infidelity. For bosonic

systems in the dispersive coupling regime, these two tech-
niques are simultaneously applicable. Strong dispersive cou-
plings have already been experimentally demonstrated in
circuit QED systems [42,44,45], meaning the robust readout
scheme can be readily applied, potentially yielding orders
of magnitude improvement in readout fidelity. In principle,
the scheme could also be applied to optomechanical [46,47],
nanomechanical [48,49], circuit quantum acoustodynamic
[50,51], or quantum magnonics systems [52,79,80].

In this work we have not only studied the fidelity of the
scheme for a simple Fock state encoding, but we have also
provided general criteria that characterize other applicable
encodings. We have shown that both cat codes and binomial
codes can be read out robustly, thereby providing examples
of quantum error correcting codes where the robust readout
scheme is applicable. Ultra-high-fidelity logical state readout
would be of great practical use in a number of applications
where measurement fidelity is prioritized, including gate tele-
portation, entanglement purification, and modular quantum
computation.
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