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We investigate cat codes that can correct multiple excitation losses and identify two types of logical
errors: bit-flip errors due to excessive excitation loss and dephasing errors due to quantum backaction from
the environment. We show that selected choices of logical subspace and coherent amplitude significantly
reduce dephasing errors. The trade-off between the two major errors enables optimized performance of cat
codes in terms of minimized decoherence. With high coupling efficiency, we show that one-way quantum
repeaters with cat codes feature a boosted secure communication rate per mode when compared to
conventional encoding schemes, showcasing the promising potential of quantum information processing
with continuous variable quantum codes.
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An outstanding challenge for quantum information
processing with bosonic systems is excitation loss, which
can be modeled as a lossy bosonic channel (LBC) [1,2]. To
suppress excitation loss, conventionally the approach is to
consider discrete variable (DV) encodings [3–8] that use
physical qubits (qudits) realized with a single excitation
distributed over two (multiple) bosonic modes and standard
qubit- (qudit-) based quantum error correction (QEC). Such
DVencoding schemes usually require a considerable number
of bosonic modes to encode one logical qubit (qudit). In
contrast, continuous variable (CV) encoding schemes deploy
the Hilbert space of higher excitations, enabling single-mode
basedQEC against loss errors. The resultingmode efficiency
can potentially lead to high-storage-density quantummemo-
ries and boost the secure communication rate per mode for
long-distance quantum communication [9–15].
Cat codes [2,16,17], among other single-mode CV

schemes [18,19], have been proposed for correcting exci-
tation loss. With the rapid development of quantum control
[20–22] and high-fidelity quantum nondemolition readout
[23–25], QEC with cat codes has recently been demon-
strated to reach the break-even point in superconducting
circuits [26]. These advances have opened up a new era of
CV quantum information in which states can be stored and
manipulated for a duration longer than the intrinsic coher-
ence time of the constituent modes.
Cat codes are based on superpositions of coherent states.

Qualitatively it is known that a proper choice of coherent
amplitude α is essential for their QEC performance: a large α
increases the probability of uncorrectable excitation loss
while a small α leads to significant overlap between
neighboring coherent components. Yet, to date, the optimal
choice of α and, hence, the optimal QEC capability of cat
codes have remained unquantified. In this Letter, we inves-
tigate cat codes that encode a logical qubit in superpositions
of 2d (d ≥ 2) coherent components and can correct up to
d − 1 excitation losses [16,17]. We quantify the two major

types of errors associated with the encoding: the logical
bit-flip error due to finite capability of correcting losses, and
the logical dephasing error induced by backaction from the
environment. The analysis reveals nontrivial choices of code
parameters that significantly reduce the backaction and
balance the two logical errors. Using parameters yielding
minimum decoherence, we analyze the performance of cat
codes in one-way quantum repeaters (QRs) for ultrafast
quantum communication over transcontinental scales.
Lossy bosonic channel.—The Kraus operator-sum rep-

resentation for the LBC is [1]

LðρÞ ¼
X∞
k¼0

EkρE
†
k; ð1Þ

where Ek ¼ ð1= ffiffiffiffi
k!

p Þγk=2ð1 − γÞa†a=2ak is the Kraus oper-
ator associated with losing k excitations, a (a†) is
the annihilation (creation) operator, and γ is the loss
probability of each excitation. Excitation loss in bosonic
systems, such as localized cavity modes for quantum
memories and propagating modes for quantum communi-
cation, can be modeled as a LBC. For cavities, γ ¼ 1 − e−κt,
where κ is the cavity decay rate and t is the storage time;
for propagating modes with attenuation length Latt,
γ ¼ 1 − η2e−L=Latt , where L is the propagation distance
and η is the coupling efficiency of the interface between
the optical channel and local processing devices.
Cat codes and properties.—The basis states of cat codes

are defined as superpositions of 2d coherent states lying
equidistantly on a circle in the phase space of a bosonicmode,

jCn
αi ¼

1

2d
ffiffiffiffiffiffi
Nn

α
p

X2d−1
k¼0

ω−knjωkαi

¼ 1ffiffiffiffiffiffi
Nn

α
p

X∞
m¼0

e−1=2jαj2αnþ2md

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 2mdÞ!p jnþ 2mdiF; ð2Þ
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whereω ¼ eiπ=d, jliF is the Fock statewith l excitations, and
n ¼ 0; 1; 2;…; 2d − 1 uniquely labels the 2d basis states.
The normalization factor reads [27,28]

Nn
α ¼

1

2d

X2d−1
k¼0

eðωk−1Þα2=ωkn ¼
X∞
m¼0

jhαjnþ 2mdiFj2: ð3Þ

Without losing generality, we assume α is real and positive.
Since jCn

αi is a superposition of n mod 2d Fock states (jniF,
jnþ 2diF, jnþ 4diF;…), cat states are orthonormal,
hCn

αjCm
α i ¼ δnm. The average excitation number ha†ain ¼

α2Nn−1
α =Nn

α → α2 for α → ∞ [29], as shown in Fig. 1(b),
while for finite α it deviates from α2 due to the oscilla-
tory Nn−1

α =Nn
α.

The 2d-dimensional cat Hilbert space can be divided into
d subspaces labeled by s ¼ 0; 1;…; d − 1. The “s sub-
space” has excitation number s mod d, spanned by two
logical states j0Lis ¼ jCs

αi and j1Lis ¼ jCsþd
α i. Figure 1(a)

shows the Wigner functions and excitation distributions of
jCs

αi and jCsþd
α i for d ¼ 3, α ¼ 3, and s ¼ 0. It becomes

clear that d, α, and s are three degrees of freedom that
determine the performance of cat codes in protecting
quantum states against LBCs.
After losing k excitations, the s subspace is mapped to the

(s − k) subspace, jCs
αi → jCs−k

α i and jCsþd
α i → jCsþd−k

α i.
Hence, we can unambiguously distinguish 0 ≤ k ≤ d − 1
losses without destroying the encoded logical states by
projectively measuring the excitation number mod d (called
the “Zd measurement”). In fact, since a cat statemaps back to
itself after losing integer multiples of 2d excitations, we
can restore the logical states correctly with 2md ≤ k ≤
ð2mþ 1Þd − 1 losses for integerm. If there are ð2mþ 1Þd ≤
k ≤ 2ðmþ 1Þd − 1 losses, however, we will misidentify the

logical states. Since the symmetric superposition jCs
αi þ

jCsþd
α i → jCs−k

α i þ jCsþd−k
α i is preserved even if we mis-

identify the logical states, the misidentification effectively
induces an X rotation in the logical basis—a logical bit-
flip error.
In addition to the logical bit-flip error, the LBC can induce

another type of error via environment backaction resulting
from nonzero overlap between neighboring coherent com-
ponents. For finite α, the logical states jCs

αi and jCsþd
α i

generically differ in average excitation number, as shown in
Fig. 1(b), as well as the mth moments hða†aÞmis ≠
hða†aÞmisþd for m ∈ Zþ. Hence, the excitation loss to the
environment leaks out information about the encoded state,
which is captured byKraus operators acting on logical states,

EkjCn
αi∝ð1−γÞa†a=2akjCn

αi¼e−Δαk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nn−k

α0 =Nn
α

q
jCn−k

α0 i with
α0 ¼ ffiffiffiffiffiffiffiffiffiffi

1 − γ
p

α and Δ ¼ γα2. The fact that Nn−k
α0 =Nn

α is
slightly different for n ¼ s and n ¼ sþ d results in a
backaction associated with losing k excitations [35].
Though when we average over all possible k, the back-
action-induced bias towards jCs

αi or jCsþd
α i is mostly

canceled, the backaction does reduce the coherence between
jCs

αi and jCsþd
α i and effectively induces a logical dephas-

ing error.
QEC recovery for cat codes.—Consider encoding with a

fixed s ∈ f0; 1;…; d − 1g. To protect the quantum infor-
mation from bosonic loss, we introduce a QEC recovery
operation R [Fig. 1(d)], which consists of a Zd measure-
ment, conditional loss compensation, and amplitude resto-
ration. First, we use the Zd measurement to distinguish
different loss events up to losing d − 1 excitations. Similar
to the qubit-assisted parity (Z2) measurement [25], we
consider a d-level ancilla (e.g., using higher levels of a
transmon [36]) that couples to a cavity via a dispersive
Hamiltonian HDC ¼ P

d−1
j¼0 jχjjihjja†a, where jji are the

basis states of the ancilla. Combined with Fourier gates on
the ancilla, Fd, we can implement the unitary operation

UDC ¼ F†
de

−iðπ=χÞHDCFd; ð4Þ

which maps the Zd information to the ancilla that is
subsequently measured in fjjig basis. Then, conditioned
on the loss rate γ and measured excitation loss number
(mod d), k ∈ f0; 1;…; d − 1g, we implement the following
unitary to restore the state back to the s subspace:

Uk ¼ ðjCs
α0 ihCs−k

α0 j þ jCsþd
α0 ihCsþd−k

α0 j þ H:c:Þ þ U0
k; ð5Þ

where U0
k is an arbitrary unitary on the complementary

subspace of spanfjCs
α0 i; jCsþd

α0 i; jCs−k
α0 i; jCsþd−k

α0 ig, so that
Uk is a unitary on the entire Hilbert space. Finally, we
restore the amplitude via the following unitary:

S ¼ jCs
αihCs

α0 j þ jCsþd
α ihCsþd

α0 j þ S0; ð6Þ

FIG. 1. (a) Wigner functions and excitation number distribu-
tions of jC0

3i and jC3
3i with d ¼ 3. (b) Average excitation number

ha†ain for cat states with d ¼ 3. (c) Schematic of alternating LBC
(L) and QEC recovery (R). (d) Quantum circuits of QEC
recovery for cat codes, consisting of the dispersive coupling
gate UDC followed by Zd measurement of excitation number,
conditional rotation gate Uk compensating the lost excitations,
and, finally, amplitude restoration S.
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where S0 is a complementary operation that makes S a
unitary on the entire Hilbert space. Using Eq. (2), we can
express Uk and S in the Fock basis and realize them using
SNAP gates [20] or gradient ascent pulse engineering [37],
as recently demonstrated in dispersively coupled super-
conducting transmon-cavity systems [21,22]. For S, alter-
natively, we may also use engineered dissipation to restore
the amplitude [17,38]. Overall, the QEC recovery in
Fig. 1(d) implements

RðρÞ ¼
Xd−1
k¼0

jCs
αihCs−k

α0 jρjCs−k
α0 ihCs

αj; ð7Þ

which restores the original encoded subspace. Note that the
QEC recovery R with Kraus rank d can also be imple-
mented using a two-level ancilla, with ⌈ log2 d⌉ steps of
measurement and feedforward control [39,40].
Logical bit-flip and dephasing errors.—In the regime

where (i) the probability of misidentifying logical states
due to excessive loss and (ii) the overlap between neigh-
boring coherent states in the superpositions are small, we
can approximate E ¼ R∘L as a Pauli channel [29],

EðρÞ ≈ ð1 − ϵf − ϵdÞρþ ϵfXρX þ ϵdZρZ; ð8Þ

where logical bit-flip error ϵf and logical dephasing error ϵd
are

ϵf ¼
X2d−1
k¼d

X∞
m¼0

e−ΔΔ2mdþk

ð2mdþ kÞ! ; ð9Þ

ϵd ¼
e4Δsin

2ðπ=2dÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2eμ cosψ þ e2μ

p
cos θ − 1

2e4α
2sin2ðπ=2dÞ ; ð10Þ

where μ¼2Δð2sin2½π=2dÞ−sin2ðπ=dÞ�, ψ¼Δ½2sinðπ=dÞ−
sinð2π=dÞ�, θ ¼ 2sπ=d − 2α2 sinðπ=dÞ − tan−1½eμ sinψ=
ð1 − eμ cosψÞ�. To quantify the residual decoherence
after R, we consider the effective error rate
Γðα; d; γ; sÞ≜ 1

2
∥E − I∥⋄, where I is the identity channel

and 1
2
∥ · ∥⋄ is the diamond distance [41,42]. For small

errors, Γ ≈ ϵf þ ϵd (see details in [29]).
For given γ and d, we may select coherent amplitude α

and logical subspace s to minimize Γ. As illustrated in
Fig. 2, for each fixed s-subspace encoding, the Γ oscillates
with α2 and there is a set of α where the dephasing is
suppressed to second order, reaching local minima [29].
In fact, each dip corresponds to an α at which ha†ais ¼
ha†aisþd [associated with the crossing points in Fig. 1(b)]
and the residual backaction only comes from the difference
in higher moments of a†a.
To estimate the range of Γ, we can analytically express

the approximate upper and lower bounds

Γ�ðα; γ; dÞ ¼ ϵf þ ϵdjcos θ¼∓1: ð11Þ

As illustrated in Fig. 2, to reach the minimum Γ− (lower
black curve), it is crucial to perform combined optimization
of α and s. In fact, if we are nonselective in the logical
subspace (i.e., averaging over all s) and only optimize
the coherent amplitude α, the averaged error rate Γ̄ ¼
1
2
ðΓþ þ Γ−Þ ≈ 1

2
Γþ (dashed purple curve) can be orders of

magnitude larger than Γ− for the parameter region of
interest. Moreover, the combined optimization notably
leads to a smaller optimized coherent amplitude.
We can estimate the optimal amplitude αo that minimizes

Γ− by equating the two errors in Eq. (11). For Δ ≪ d, we
have

α2o ≈ ξWð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π4d!=2d4d−2

q
=ξγÞ ð12Þ

for d > 2, where ξ ¼ ðd − 2Þ=½4 sin2ðπ=2dÞ − γ� and W is
the Lambert W function z ¼ f−1ðzezÞ ¼ WðzezÞ. The inset
of Fig. 2 shows that Eq. (12) reasonably approximates the
exact αo. Based on the estimated αo, we can identify the best
combination of α� and s� near the vicinity of Γmin

− .
Application to repetitive correction.—So far we have

considered the optimization of cat codes for one round of
LBC followed by QEC recovery, and identified the optimal
amplitude α and logical subspace s for given d and γ. For
practical applications, however, repetitive correction can be
needed. In the following, we consider one-way QRs
[14,15,43,44] with cat codes over transcontinental distan-
ces (≥ 103 km) and optimize repeater spacing L0 to best
maintain the coherence.
Introducing the dimensionless repeater spacing ~L0 ¼

L0=Latt (Latt ¼ 20 km for optical fiber), we notice that
typically ~L0 ≪ 1 for one-way QRs, so that the fiber-
induced loss is correctable. The goal is to minimize the
error accumulation rate

FIG. 2. Effective error rate (numerical) for logical subspace
s ¼ 0, 1, 2, 3 (blue, red, green, and orange solid curves,
respectively) and analytical bounds Γ� from Eq. (11) (black
solid), for d ¼ 4 and γ ¼ 0.5%. The two types of errors in Γ−,
logical bit-flip error ϵf and dephasing error ϵdjcos θ¼1, are shown.
The purple and black dashed lines mark Γ̄ and the minimized
decoherence Γmin

− , respectively. The inset shows the dependence
of Γmin

− and α2o on γ. The approximate α2o from Eq. (12) (solid line)
agrees well with numerics.
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τ−ðα; ~L0; dÞ ¼ Γ−ðα; γ; dÞ= ~L0: ð13Þ

Figure 3(a) shows the minimized τ− as a function of d for
η ¼ 99.5% with the associated arc length between neigh-
boring coherent states παopt=d. We observe that the mini-
mized τ− is anticorrelated with παopt=d, as an increasing arc
length reduces the coherent component overlap and con-
sequently suppresses the dephasing. For small d, the overall
bit-flip error is better suppressed as d increases, thus
favoring a larger arc length; for large d, however, the
typical number of losses roughly is Δ ∝ γd2, leading to
fast-growing uncorrectable loss errors. Hence, there is an
optimized choice of d that minimizes the overall error.
For one-way QRs with cat codes, the quantum operation

of the chain [Fig. 1(c)] can be modeled by EN ¼ ðR∘LÞN,
with N ¼ Ltot= ~L

opt
0 Latt stations, and we consider quantum

key distribution to evaluate the performance [29]. Using the
optimized secure key rate per mode (SKRPM) as a metric,
in Fig. 3(b) we compare the performance of one-way QRs
[47] with cat codes, quantum parity code (QPC) [15,46],
and quantum polynomial code (QPyC) [45] for η ¼ 99.5%.
We see that, with high coupling efficiency, cat codes make
better use of the mode resource and can achieve much
higher SKRPM over thousands of kilometers compared
with DV quantum codes.
Discussion on imperfections.—So far, we have only

considered suppressing decoherence induced by photon
loss. Nonetheless, QEC recovery [Fig. 1(d)] in practice can
be faulty. To achieve a comparable performance enhance-
ment (from Γ̄ to Γ−) as the ideal case, the error introduced
by recovery should be sufficiently small ϵrec ≲ Γ−. As
detailed in the Supplemental Material [29], various imper-
fections can be efficiently suppressed. The dominant
imperfection is the T1 decay of the ancilla during dis-
persive coupling, which may lead to unreliable Zd meas-
urement and an imperfect Uk gate. Besides experimentally
improving the T1 time of the ancilla [48–50], there are
various approaches to suppress the errors induced by the

ancilla decay. For example, we may use resonant coupling
between the ancilla and the cavity for faster quantum gates,
with gate time (∼10 ns [51,52]) much shorter than that for
dispersive coupling (∼1 μs [22]) and, consequently, sup-
press the error from the ancilla decay.
Alternatively, we may implement an equivalent recovery

circuit without suffering from ancilla decay. It contains
three modifications: (i) use majority voting based on
repeated parity measurement and dispersion engineering
to suppress the measurement error due to ancilla decay to
higher order, (ii) switch the logical subspace to the (s − k)
subspace to avoid the Uk gate, and (iii) for amplitude
restoration S, restore α to the value that is close to the
optimal amplitude αo and minimizes Γðα; d; γ; s − kÞ. As
the variation in Γ− is small near αo, switching to (s − k)
subspace can still achieve a small effective error rate. We
note S can be achieved via multiphoton pumping [17]
insensitive to ancilla decay as it only virtually excites the
ancilla. Therefore, the modified circuit can be robust
against ancilla decay and other imperfections [29].
Conclusion and outlook.—We have investigated cat

codes for protecting quantum states against bosonic exci-
tation loss. At the encoded level, there are two major types
of uncorrectable errors, logical bit-flip error due to exces-
sive excitation loss and logical dephasing error induced by
backaction. We have demonstrated that the nontrivial
combination of coherent amplitude and logical subspace
can efficiently suppress logical dephasing error and lead to
greatly improved quantum error correction performance.
We expect to observe suppressed backaction in other
approximate continuous variable quantum codes as
h0Lja†aj0Li ¼ h1Lja†aj1Li is satisfied and the balance
between the backaction and excessive excitation loss is
critical for optimizing their performances. Comparison
between cat codes and other single-mode schemes, such
as the Gottesman, Kitaev, and Preskill codes [18,53,54] and
binomial codes [19], over a lossy bosonic channel could
shed light on the optimal construction of single-mode
quantum code. We notice that cat codes become less
favorable than conventional multimode schemes in the
case of long communication distance [Fig. 3(b)] and/or
high coupling loss [29], as a result of high occupation of a
single mode. This will motivate us to explore unconven-
tional multimode continuous variable encodings with
multiple excitations per mode [55] that may asymptotically
achieve the channel capacity of a lossy bosonic channel.
As an application, we have explored one-way quantum

communication over long distances with cat codes and
found that, given high-fidelity coupling into and out of the
repeaters, this single-mode scheme can outperform conven-
tional ones with a single excitation occupying multiple
modes, in terms of secure key rate per mode. Such cat
encoding of flying qubits can also be used for remote
entanglement generation with error correction [56] and
quantum state transfer via noisy photonic or phononic

FIG. 3. Optimized performance of cat codes for QRs with η ¼
99.5% and comparison with selected DV schemes. (a) Minimum
error accumulation rate τ− (red) and associated optimum arc
length παopt=d (blue). (b) Optimized SKRPM over long distances
for one-way QRs with cat codes (red solid), quantum polynomial
codes [45] (brown dotted), and quantum parity codes [15,46]
(gray dashed). t0 is the gate operation time taken as the same for
three schemes.
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waveguides [57,58]. With recent progress on efficient
coupling between fiber and optical waveguides [59], and
high-fidelity frequency conversion between optical and
microwave modes [60–62], we may even envision realistic
quantum repeaters consisting of superconducting circuits
for error correction and optical-microwave quantum trans-
ducers for protecting transmitted quantum information
against photon loss in optical channels.
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Note added.—The authors recently became aware of a
related work on cat codes [63]. Different from that work,
here we propose a deterministic amplitude restoration for
recovery and consider combined optimization of amplitude
and logical subspace.
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