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Subwavelength-width optical tunnel junctions for ultracold atoms
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We propose a method for creating far-field optical barrier potentials for ultracold atoms with widths that are
narrower than the diffraction limit and can approach tens of nanometers. The reduced widths stem from the
nonlinear atomic response to control fields that create spatially varying dark resonances. The subwavelength
barrier is the result of the geometric scalar potential experienced by an atom prepared in such a spatially varying
dark state. The performance of this technique, as well as its applications to the study of many-body physics and
to the implementation of quantum-information protocols with ultracold atoms, are discussed, with a focus on the
implementation of tunnel junctions.
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I. SUBWAVELENGTH-WIDTH BARRIER

Optical dipole potentials are essential tools for the manipu-
lation of degenerate quantum gases. For example, they provide
flexible trapping geometries [1], highly tunable optical lattices
[2], and well-controlled disordered potentials [3]. However,
unless operated near surfaces [4–9], spatial features of such
potentials are typically limited by diffraction to be wider than
half of an optical wavelength λ. The use of a three-level system
to generate an optical potential in place of the typical two-level
system offers more flexibility, because dark resonances [10]
allow one to overcome the diffraction limit [11–21]. In this
paper, building on previous studies of subwavelength-scale
forces [22], atom localization [11–21,23–43], and non-dark-
state-based techniques for building subwavelength potentials
in the far field [44–55], we use the geometric scalar (Born-
Huang) potential [56–58] experienced by spatially dependent
dark states to create optical potential barriers with subwave-
length widths. Our proposal has the advantage of not using
lattice modulation, which could lead to heating, and of taking
advantage of a feature—the geometric scalar potential—that
naturally accompanies any subwavelength potential formed
by spatially dependent dressed states. Furthermore, the use
of dark states contributes to reduced spontaneous emission in
our scheme.
The main idea of the proposed scheme can be understood

using the three-state model shown in Fig. 1(a). A probe field
with a spatially uniform Rabi frequency � resonantly couples
states |g〉 and |e〉. A control field resonantly couples states
|r〉 and |e〉 and has Rabi frequency �c(x) that depends on
position x, as shown in Fig. 1(b). While far from the origin this
control field is much stronger than the probe field (�c � �),
the control field vanishes at x = 0. For zero detuning, δ = 0,
destructive interference of excitation pathways from |g〉 and
|r〉 up to |e〉 ensures that the so-called dark state, |D(x)〉 =
[�|r〉 − �c(x)|g〉]/√�2 + �2

c(x), is decoupled from both
optical fields and has zero energy in the frame rotating with
the applied optical fields [10]. To transform to a new basis,

where |D(x)〉 is one of the basis states, we apply a spatially
dependent unitary transformation, which acts nontrivially on
the kinetic energy (since the latter involves spatial derivatives)
and, as we will show in detail below [see Eq. (6)], endows the
dark state with a geometric scalar potential (� = 1) [56–58]

U (x) = 1

2m

(
�∂x�c(x)

�2 + �2
c(x)

)2
= Ew

[1+ (x/w)2]2
, (1)

where, in the last equality, we assumed for concrete-
ness a linear position dependence of the Rabi frequency,
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FIG. 1. Scheme for creating a subwavelength barrier. (a) Level
diagram featuring a resonant probe field with a spatially uniformRabi
frequency� and a resonant control fieldwith spatially dependentRabi
frequency �c(x). γ is the linewidth of the excited state. (b) Spatial
dependence of the probe and control Rabi frequencies. (c) Geometric
scalar potential U (x) of the dark state |D〉 features a potential barrier
of heightEw = 1/(2mw2) and subwavelengthwidthw determined by
� = �c(w). The energies of the other two rotating-frame eigenstates
|+〉 and |−〉 are shown schematically.
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�c(x) = �sx/σ , which is valid around the node. Here σ ∼
λ is a diffraction-limited length scale, the dimensionless
parameter s controls the amplitude of the control field relative
to the probe field, w = σ/s is the width of the resulting
potential, Ew = 1/(2mw2) is the characteristic kinetic energy
associated with this width, and m is the mass of the atom.
As shown in Fig. 1(c), this creates a potential barrier of
height Ew and width w determined via � = �c(w). Stated
simply, the dark state is |g〉 for �c(x) � �, while |r〉 is the
dark state for �c(x) � �. As an atom moves along x, the
change of the internal state from |g〉 to |r〉 and back happens
over the short length scale w. The geometric scalar potential
U (x) provides a potential barrier that effectively describes the
kinetic energy of atomic micromotion [59,60] emerging due to
the rapid change of the internal state in this region. Crucially,
the width of the barrier is limited not by an optical wavelength
but by the ratio of � and the slope of �c(x), which in turn
depends on the control beam intensity. The height Ew of the
potential is determined by the width w and, due to the inverse
quadratic scaling, makes the barrier impenetrable for w → 0
while keeping incoming energy E fixed.
If one rescales x byw, one sees that the eigenvalue problem

in the presence of the potential in Eq. (1) depends only on
the dimensionless parameter E/Ew. Transmission |t |2 and
reflection |r|2 probabilities are shown as a function of E/Ew

in Fig. 2(a). For our applications, in which particles either
tunnel through the barrier or use the barrier as a wall, we
will be interested in E < Ew. It is therefore useful to evaluate
the transmission probability through the barrier in the limit
E/Ew → 0, which we numerically find to scale linearly with
E/Ew and be approximately given by |t |2 ≈ 0.4E/Ew. Below,
we will use our numerical solution for the ideal problem of
scattering from U (x) to analyze imperfections and specific
applications of the barrier.
The ability to generate subwavelength barriers opens

numerous avenues of research with ultracold atoms. First,
since these barriers become impenetrable at fixedE asw → 0,

|ψ−(x)|Ω√
EEw

(b)(a)

E
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x
w
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(1 + x2)3/2

FIG. 2. (a) Transmission |t |2 and reflection |r|2 probabilities
for the geometric scalar potential U (x) [Eq. (1)] as a function
of the incoming energy E. (b) |θ ′′ψD + 2θ ′ψ ′

D|√Ew/E (red), its
approximate form 1.27/(1+ x2)3/2 from Eq. (27) (black dashed),
and |ψ−(x)|�/

√
EEw (brown) for � = 20Ew and E = Ew/50.

Excited state population can be determined via Pe ∼ |ψ−(0)|2 ≈
EEw

�2
, which agrees with Eq. (8), while the nonadiabaticity er-

ror is PNA = k2
k
[|ψ−(−L)|2 + |ψ−(L)|2] ≈ 9× 10−5, which agrees

with the approximate asymptotic formula [Eq. (29)] pNA ≈
1.37

√
E/Ew e−1.75√�/Ew ≈ 8× 10−5.

they can be used to create sharp walls with a subwavelength
rise distance. One application of such sharp walls is the
creation of a two- or three-dimensional optical-box trap [61],
where sharp walls are important, for example, for defining
and detecting topological edge states [62,63]. One could also
make a one-dimensional optical-box trap, where the other two
dimensions are frozen out. Treating occupied orbitals of such a
square-well potential as sites, one can realize highly symmetric
spin models [64] and do efficient spectrum estimation of
density operators [65]. As discussed in the Supplemental
Material to Ref. [64], sharp walls are important for these
applications.
Second, introducing subwavelength features into a disor-

dered potentialmaymodify the percolation properties of such a
disorder compared to thewidely used speckle disorder [66] and
may open new avenues in the study of Anderson localization
with matter waves.
Third, subwavelength barriers are great candidates for

a robust implementation of very narrow tunnel junctions.
Let w be the junction width and ξ be either the healing
length of the condensate or the de Broglie wavelength of
a thermal cloud. As long as ξ < w, the dynamics can be
described using the local density approximation. On the other
hand, when ξ � w, one reaches the tunnel-junction limit.
In a typical Bose-Einstein condensate (BEC) experiment, the
condensate healing length is ξ ≈ 0.5 μm [67]. While it is, in
principle, possible to increase ξ , it is a demanding experimental
task since it requires working with extremely dilute clouds,
having good optical access (high numerical aperture) [68,69].
Additionally, the scattering length could be tuned through a
suitable Feshbach resonance in certain atomic species like 39K
or 7Li. However, this tool would be challenging to use for the
widely employed 23Na and 87Rb. Further, Feshbach resonances
are only available at very specificmagnetic bias fields such that
they are largely incompatible with the growing field of spinor
condensates [70]. Therefore, subwavelength techniques are
highly desirable for achieving the tunnel-junction limit. Tunnel
junctions may also enable the realization of Josephson effects
[71] or Andreev bound states [72,73].
To be specific, we will focus in this paper on the imple-

mentation of tunnel junctions for a ring BEC, which will
open avenues for a wide variety of studies. A lattice of tunnel
junctions on a ring [74] (created, for example, by superposing
control beams with opposite vorticity) will enable the creation
of lattice models with periodic boundary conditions and with
the resulting ability to support piercingmagnetic fluxes and the
associated topological phenomena. (Lattice spacings smaller
than∼10μmon a ring are challenging to achieve [75]; without
using subwavelength techniques, tunneling rates in such a
lattice will be negligible.)

II. IMPERFECTIONS

For the remainder of the paper, we will study deviations
from Eq. (1). While we will focus for simplicity on a one-
dimensional setup, extensions to higher dimensional barriers
are straightforward. In the rotating frame, under the rotating-
wave approximation, and ignoring the decay rate of state |e〉,
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the Hamiltonian of a single atom in the {|r〉, |g〉, |e〉} basis is

H = p2

2m
+

⎛
⎝ 0 0 �c(x)

0 0 �

�c(x) � 0

⎞
⎠. (2)

Destructive interference produces the dark eigenstate
|D(x)〉 = [�c(x)|g〉 − �|r〉]/�(x) which, in the absence of
p2/(2m), is decoupled from the light fields and has an eigen-
value of zero, where �(x) = √

�2 + �2
c(x). The orthogonal

bright state in the {|r〉,|g〉} subspace, |B(x)〉 = [�c(x)|r〉 +
�|g〉]/�(x), then couples resonantly to state |e〉 with Rabi
frequency�(x), giving rise to eigenstates |±(x)〉 = [|B(x)〉 ±
|e〉]/√2 with energies±�(x). To change the Hamiltonian into
the {|D〉,|+〉,|−〉} basis, it is convenient to define the unitary
operator

R† = |D̃〉〈D(x)| + |+̃〉〈+(x)| + |−̃〉〈−(x)|, (3)

where |D̃〉 and |±̃〉 are position-independent vectors, which
can be thought of as |D(x0)〉 and |±(x0)〉 evaluated at some
fixed position x0. In the {|D̃〉,|+̃〉,|−̃〉} basis, the Hamiltonian
is

H ′ = R†HR = (p − A)2

2m
+

∑
a=±

a�(x)|ã〉〈ã|, (4)

where the effective vector potential A = iR†∂xR is [58]

A = i
� ∂x�c(x)

�
2
(x)

(|B̃〉〈D̃| − |D̃〉〈B̃|) (5)

and |B̃〉 = (|+̃〉 + |−̃〉)/√2. Therefore,

H ′ = p2

2m
+ U (x)|D̃〉〈D̃|

+
∑
a=±

(
a�(x)+ U (x)

2

)
|ã〉〈ã| + V, (6)

where U (x) = 〈D̃|A2|D̃〉/(2m) is the geometric scalar poten-
tial given by Eq. (1). In Eq. (6), we have explicitly presented
the terms diagonal in the {|D̃〉,|+̃〉,|−̃〉} basis. An additional
off-diagonal contribution

V = −pA + Ap

2m
+ U (x)

2
(|+̃〉〈−̃| + |−̃〉〈+̃|) (7)

describes the coupling between these basis states. Since V ∼
Ew, we should be able to treat V perturbatively in the limit
� � Ew, in which |D̃〉 is separated from |±̃〉 by ≈ � at the
distance of closest approach.Wewill assume this limit, as well
as E � Ew, for the remainder of the paper.
We now analyze the two main imperfections associated

with the subwavelength barrier. The first imperfection is the
nonzero probability PNA of losing the atom into the open |−̃〉
channel due to the nonadiabatic coupling between |D̃〉 and |−̃〉.
Since the nonadiabatic coupling is ∼Ew and the minimal gap
to |−̃〉 is�, we expectPNA to be small provided the adiabaticity
condition� � Ew is satisfied. We will derive this adiabaticity
condition below.
The second imperfection is the nonzero probability Psc

of spontaneously scattering a photon from the excited state
|e〉, which can be populated due to the nonadiabatic coupling
between |D̃〉 and |±̃〉, which in turn have |e〉 components. Such

a scattering event can lead to heating and loss of atoms because
a single scattered photon can transfer the atom out of the dark
state |D̃〉.Wewill work in the limit� � γ , where spontaneous
emission can be analyzed perturbatively: we will calculate the
typical probability Pe of the excited state at x = 0 by solving
the scattering problem in the absence of spontaneous emission,
and then use that to evaluate the probability of scattering a
photon in a single pass Psc ∼ γPe(w/

√
E/m), where the term

in parentheses is the crossing time.
It is easy to estimate on physical grounds the probability

Pe of the excited state at x = 0. In the original units, the dark-
state probability at x = 0 is ∼ |t |2 ∼ E/Ew. The admixture
of |−̃〉 (and hence of |e〉) is simply ∼ (Ew/�)2, where the
nonadiabatic coupling Ew plays the role of an effective Rabi
frequency and � plays the role of detuning. Multiplying the
two together we obtain

Pe ∼ EEw

�2
, (8)

which agrees well with the more precise calculation below.
The probability of scattering a photon in a single pass is then
Psc ∼ γ

√
EEw/�2.

We now evaluate the imperfections more precisely for
�c(x) = �sx/σ = �x/w. Measuring distances in units of w
and energies in units ofEw, the equations become independent
of s. In particular, we are looking for an eigenstate of energyE

of the form |ψ〉 = ψg|g〉 + ψe|e〉 + ψr |r〉 that has an incoming
dark-state plane wave from the left. This energy E and the
probe Rabi frequency� are the only two remaining parameters
in the problem. The eigenvalue equations are

Eψg = −ψ ′′
g + �ψe, (9)

Eψe = −ψ ′′
e + �ψg + �cψr, (10)

Eψr = −ψ ′′
r + �cψe, (11)

where �c = �x, and E and � have been rescaled by Ew. We
define the incoming k vector (in units ofw) as k = √

E and the
k vector in the |−̃〉 channel at x = L � 1 far away from the
barrier as k2 = √

�L. Defining the |D̃〉,|B̃〉,|±̃〉 amplitudes as

ψD = xψg − ψr

x2 + 1 , (12)

ψB = xψr + ψg

x2 + 1 , (13)

ψ± = ψB ± ψe√
2

, (14)

the boundary conditions at −L and +L are

ψ ′
D(L) = ikψD(L), (15)

ψ ′
D(−L) = −ikψD(−L)+ 2ike−ikL, (16)

ψ+(±L) = 0, (17)

ψ ′
−(±L) = ±ik2ψ−(±L). (18)

These correspond, respectively, to incoming |D̃〉 from the right
vanishing; incoming |D̃〉 from the left having unit amplitude;
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|+̃〉 being unoccupied at±L; and incoming |−̃〉 from the right
and left vanishing.
The transmission and reflection amplitudes of the dark state

are then

t = ψD(L)e
−ikL, (19)

r = [ψD(−L)− e−ikL] e−ikL. (20)

We then define the nonadiabaticity error as

pNA = 1− |t |2 − |r|2 = k2

k
(|ψ−(−L)|2 + |ψ−(L)|2), (21)

which is the probability that, instead of staying in the |D̃〉
channel, the outgoing particle leaves in the open |−̃〉 channel.
To simplify the problem, we start by changing the basis

from {|g〉,|e〉,|r〉} to {|D̃〉,|+̃〉,|−̃〉}. The resulting equations
of motion are

EψD = −ψ ′′
D+UψD + 1√

2
[θ ′′(ψ+ + ψ−)+ 2θ ′(ψ ′

+ + ψ ′
−)],

(22)

Eψ+ = −ψ ′′
++�ψ+ + U

2 (ψ+ + ψ−)− 1√
2
(θ ′′ψD + 2θ ′ψ ′

D),

(23)

Eψ− = −ψ ′′
−−�ψ− + U

2 (ψ+ + ψ−)− 1√
2
(θ ′′ψD + 2θ ′ψ ′

D),

(24)

where U = 1/(1+ x2)2, θ = arctan x, and � = √
x2 + 1 in

the rescaled units.
Since |+̃〉 is a closed channel, for the purpose of calculating

the adiabaticity error and the populationPe of |e〉, it is sufficient
to simply set ψ+ = 0. We have checked numerically that
within our regime of interest (� � 1 and E � 1), this is an
excellent approximation. Furthermore, in this limit, for the
purposes of calculating |ψ−(±L)|2 and Pe, it is an excellent
approximation to drop all off-diagonal terms from the equation
for ψD . Since E � 1 and � � 1, we can also drop Eψ− and
Uψ−/2 from the ψ− equation. This leaves us with

EψD = −ψ ′′
D + UψD, (25)

0 = −ψ ′′
− − �ψ− − 1√

2
(θ ′′ψD + 2θ ′ψ ′

D). (26)

The equation for ψD is now just the ideal single-channel
equationwhose solutionwe have already obtained numerically
above. Specifically, aswe show in Fig. 2(b), in the limitE � 1,
the following is an excellent approximation:

θ ′′ψD + 2θ ′ψ ′
D ≈ i

1.27
√

E

(1+ x2)3/2
. (27)

The resulting simple second-order differential equation forψ−
[Eq. (26)] can be solved using variation of parameters, where
we construct the actual solution from two general solutions of
the homogeneous equation. Furthermore, for the solution to
the homogeneous equation, we use the WKB approximation.
Referring the reader to the Appendix for straightforward
details of this solution, here we simply present the answers

and show in Fig. 2(b) the numerical calculation of |ψ−(x)|
using Eqs. (9)–(11) and Eqs. (15)–(18). In particular, we find
in the Appendix and confirm numerically in Fig. 2(b) that

Pe ∼ |ψ−(0)|2 ∼ E/�2, (28)

which recovers Eq. (8), as desired.
Furthermore, we find in the Appendix and confirm numer-

ically in Fig. 2(b) that |ψ−(L)| = |ψ−(−L)| and that

pNA = 2
k2

k
|ψ−(L)|2 ≈ 1.37

√
Ee−1.75√�. (29)

As predicted, pNA → 0 as � → ∞. Furthermore, pNA → 0
as E → 0 since, in this limit, the incoming particle moves
very slowly allowing for near-perfect adiabaticity and does
not penetrate significantly into the barrier.

III. EXPERIMENTAL PARAMETERS

We now estimate the relevant experimental parameters for
an implementation of tunnel junctions for a BECof 23Na, using
for concreteness the configuration of Ref. [67]. We assume the
control field has an intensity profile proportional to �2

c(x) =
�2s2(1− e−x2/σ 2 ), so that�2

c(x) � �2 s2x2

σ 2
for x � σ . Such an

intensity profile can be approximately implemented by using
existing techniques [61,67]. For a given numerical aperture
NA, the spatial scale σ and hence the smallest feature of such
an intensity profile is constrained by the diffraction limit to
be greater than or equal to σ = λ√

2πNA
[76]. We will take

σ = 3 μm. For an incoming energy equal to the chemical
potential, i.e., E = 2π × 1 kHz ≈ 1/(2mξ 2), without using
subwavelength techniques, a barrier potentialV0 e−x2/σ 2 would
exhibit appreciable tunneling tunneling (|t |2 > 0.01) only for
a narrow window E < V0 < 1.25E, making tunneling effects
negligible in the experiment ofRef. [67]. To increase the effects
of tunneling, we choose the desired barrier width w = 100
nm, which gives s = σ/w = 30 and barrier height Ew =
2π × 22 kHz, corresponding to |t |2 ≈ 0.02 for an incoming
energy E = 2π × 1 kHz. We see that, for these parameters,
tunneling is observable even for an incoming energy that
is a factor of 20 smaller than the barrier height, making
tunneling crucial in the transport of atoms through such links.
Taking the maximum available control Rabi frequency to be
�s = 2π × 200 MHz, we have � = 2π × 6.7 MHz, so the
adiabaticity condition � � Ew is satisfied. Since we would
like to be in the tunneling regimeE < Ew, using γ = 2π × 10
MHz, we find that the photon scattering probability Psc =
γ
√

EEw/�2 < γEw/�2 = 0.005 ismuch smaller than unity,
as desired [77]. The implementation of the barrier will require
the residual control amplitude at the node to be at most s times
smaller than the maximum control field amplitude, which is
easily achievable.
The adiabaticity condition and the maximum achievable

control Rabi frequency limit the smallest achievable w to
>[σ/(2m�s)]1/3 = 15 nm, corresponding to s = 200 and
� = Ew = 2π × 1 MHz. A barrier of such height would be
nearly impenetrable [|t |2 < 4× 10−4] for typical incoming
energies [< (2π )1 kHz] and would thus function as a sharp
wall. For an incoming kinetic energy of (2π )1 kHz, the photon
scattering probability Psc ≈ 0.3 is still modest, as desired.
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However, this estimate of Psc likely has to be modified to
take into account the regime � � γ .

IV. OUTLOOK

While we have focused on the case where both applied
fields are on resonance with the corresponding transition, the
introduction of single- and two-photon detuning may provide
additional flexibility for improving the performance of the bar-
rier. The technique we presented allows for the generation of
an array of barriers that have subwavelength widths but whose
separation is still diffraction limited. By stroboscopically
shifting the resulting potential to different positions [53], one
might be able to create a time-averaged potentialwhere barriers
of subwavelength width are separated by subwavelength dis-
tances. Alternatively, subwavelength distances between barri-
ers can be achieved by using additional levels and additional
beams, with n beam pairs (i.e., � and �c) required to divide
the lattice constant by n. Lattices with reduced lattice constants
will allow the realization of Hubbard-type models with
increased tunneling and interaction energies [5,6,8,45,47].
Such increased energy scales will reduce temperature and
coherence requirements for studying these models.

Note added. A recent related proposal for designing
subwavelength barriers with a focus on creating double-layer
potentials is given in [78].
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APPENDIX: SOLUTION OF EQ. (26)

Here we solve the second-order differential equation forψ−
[Eq. (26)], which allows us to derive the expressions for the
excited-state population Pe inside the barrier [Eq. (28)] and
the probability PNA of the nonadiabatic loss of the atom into
the |−̃〉 channel [Eq. (29)].
We solve the second-order differential equation for ψ−

[Eq. (26)] using a variation of parameters, where we con-
struct the actual solution from two general solutions of the
homogeneous equation. Furthermore, for the solution to the
homogeneous equation, we use the WKB approximation.
The answer is then computed as follows. These are the two
homogeneous solutions in the WKB approximation:

f1(x) =
(

L2 + 1
x2 + 1

)1/8
e−i

√
�

∫ x

−L
(y2+1)1/4dy, (A1)

f2(x) =
(

L2 + 1
x2 + 1

)1/8
e−i

√
�

∫ L

x
(y2+1)1/4dy. (A2)

We chose the normalization so that f1(−L) = f2(L) = 1.
Calculating the Wronskian, we find that under the WKB
approximation, it is independent of x:

W = f1f
′
2 − f ′

1f2 = −i2
√

�(L2 + 1)1/4. (A3)

The solution for ψ− is then

ψ−(x) = −f1(x)
∫ L

x

f2(y)g(y)

W
dy − f2(x)

∫ x

−L

f1(y)g(y)

W
dy,

(A4)

where we used Eq. (27) to define

g(x) = 1√
2
(θ ′′ψD + 2θ ′ψ ′

D) ≈ i
0.90

√
E

(1+ x2)3/2
. (A5)

It is easy to check that

∫ L

0
f2(y)g(y)dy ∼

∫ 0

−L

f1(y)g(y) ∼ L1/4
√

E/�, (A6)

which immediately yields Pe in Eq. (28).
We also see that |ψ−(L)| = |ψ−(−L)|, so that

pNA = 2
k2

k
|ψ−(L)|2 = 2

k2

k

∣∣∣∣
∫ L

−L

f1(x)g(x)

W
dx

∣∣∣∣
2

(A7)

= 0.41
√

E√
�

∣∣∣∣
∫ L

−L

(1+ x2)−13/8e−i
√

�
∫ x

0 (y
2+1)1/4dydx

∣∣∣∣
2

.

(A8)

To take the �-dependent integral inside the norm in the limit
� � 1, we expand the exponent around x = −i,

i

∫ x

0
(y2 + 1)1/4dy ≈ π3/2

3
√
2�2(3/4)

− 21/44

5
(1− ix)5/4,

(A9)

where � is the gamma function, so that

pNA ≈ 0.41
√

E√
�

e
−√

�
√
2π3/2

3�2(3/4)

[∫ L

−L

e
√

� 21/44
5 (1−ix)5/4

(1+ x2)13/8
dx

]2
.

(A10)

We have therefore extracted the most sensitive exponential
dependence on

√
�. Numerics show that, possibly up to small

corrections, the remaining integral at large � is given by

∫ L

−L

e
√

� 21/44
5 (1−ix)5/4

(1+ x2)13/8
dx ≈ 1.84�1/4. (A11)

The final result is therefore

pNA ≈ 1.37
√

Ee
−√

�
√
2π3/2

3�2(3/4) , (A12)

which yields Eq. (29).
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P. Zoller, andM. D. Lukin, Phys. Rev. Lett. 103, 123004 (2009).
[5] M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson,

J. I. Cirac, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 109,
235309 (2012).

[6] O. Romero-Isart, C. Navau, A. Sanchez, P. Zoller,
and J. I. Cirac, Phys. Rev. Lett. 111, 145304
(2013).

[7] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V.
Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin,
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