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We investigate a quantum repeater scheme for quantum key distribution based on the work by S. Muralidharan
et al. [Phys. Rev. Lett. 112, 250501 (2014)]. Our scheme extends that work by making use of error syndrome
measurement outcomes available at the repeater stations. We show how to calculate the secret key rates for the
case of optimizing the syndrome information, while the known key rate is based on a scenario of coarse graining
the syndrome information. We show that these key rates can surpass the Pirandola-Laurenza-Ottaviani-Banchi
bound on secret key rates of direct transmission over lossy bosonic channels.
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I. INTRODUCTION

To explore the possibility of quantum communication
schemes over a long distance [1–5], an essential question is
whether the secret key generation rate of the quantum key
distribution (QKD) with the help of intermediate stations
could be better than any key generation scheme without
intermediate stations. A clear criterion for this is to surpass
the Takeoka-Guha-Wilde (TGW) bound [6,7]. This is an upper
bound of the secret key rate per optical mode over a pure lossy
channel and is given by

RTGW = log2
1+ η

1− η
, (1)

where η ∈ (0,1] is the transmission of the lossy channel.
Hence, any key generation over a distance corresponding to
the transmission η cannot surpass RTGW when there are no
intermediate stations. While the TGW bound was suggested
to be unachievable, Pirandola, Laurenza,Ottaviani, andBanchi
(PLOB) have reported that the corresponding tight bound is
given by [8,9]

RPLOB = log2
1

1− η
. (2)

It has been shown that the TGW bound cannot be over-
come if we are only able to use Gaussian channels as
intermediate stations in a one-way structure [10]. This no-
go statement for Gaussian repeaters holds also for the
PLOB bound. An open question is whether there are other
simple intermediate stations facilitating quantum repeater
behavior.
Recently, various quantum repeater architectures have

been studied [11–14]. Ultimately, one-way schemes with a
teleportation-based error-correction (TEC) approach [15,16]
have an advantage in terms of achievable rates. Due to the
structure of the error correction, the syndrome information
of all intermediate stations is available for optimizing the
key rate. In Ref. [12], the syndrome measurement was used
to flag success or failure events and to reduce the effective
errors in the success case. The secret key rate was then
analyzed by calculating the probability that all intermediate

stations show success events and by calculating the expected
remaining error rates. No further details of the syndrome
measurements have been used. Hence, an attainable key rate
is immediately determined without the need for keeping track
of every combination of possible syndrome outcomes coming
through all intermediate stations. This theoretical simplicity
also suggests a relatively low technical difficulty for a practical
implementation. On the other hand, such a coarse-grained
treatment of the syndrome outcomes will discard some of
useful information, and the key rate will be lower than
potentially achievable performance of a one-way protocol that
makes use of the fine-grained syndrome information. In other
words, we can obtain a better key rate when we keep the
syndrome information and optimize its use. The question is
how significant this improvement is, so that one can decide
whether it is worthwhile to invest the additional processing
overhead required for the fine-grained treatment.
In this paper, we show how to calculate the secret key

rate of one-way schemes when the syndrome measurement
outcomes are taken into account and address the question
of whether they can be potentially useful in overcoming
the PLOB bound. We positively answer this question by
showing that one can beat the PLOB bound by making an
appropriate choice of parameters. We also point out that
our intermediate stations are regarded as quantum chan-
nels, and there exist simple quantum-channel stations which
facilitate the behavior of a quantum repeater. Although a
fine-grained treatment of the syndrome outcomes is not
necessary to surpass the PLOB bound, it turns out to be
useful to extend the transmission distance and improve error
tolerance for a high-rate key generation above the PLOB
bound.
This paper is organized as follows. After an introduction

of the models and related basic notions of one-way stations,
we show how to calculate the secret key rate with the use
of syndrome information in Sec. II. We compare the key
rates for various parameters and identify the area where the
performance of the TEC stations surpasses the PLOB bound
in Sec. III. There, we also describe the design of a quantum
channel station that is sufficient to surpass the PLOB bound.
We summarize the results in Sec. IV.
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FIG. 1. Encoded transmission of a logical qubit based on a
block ofNp = nm single photons (physical qubits). (a) Transmission
through a concatenation of intermediate stations. Each station is
composed of a decoder and an encoder. A unit segment is connected
with the number of nm optical-loss channels whose transmission
is η0 and qubit-error rate is e. The efficiency of the unit segment
can be described by the success probability P0 that the logical qubit
is received and the average error E0 of the successfully received
logical qubit. (b) It is not necessary for the intermediate stations to
physically execute a decoding operation to output a logical qubit.
But an error correction, a syndrome measurement followed by a
recovery operation, can be performed effectively by keeping the
syndrome information of intermediate stations {i1,i2, . . . ,iN }. A
syndrome outcome of a single station i assigns conditional success
probability wi and conditional logical error εi . The set {wi,εi} and
the measured sequence {i1,i2, . . . ,iN } determine the net performance
of the transmission.

II. STRUCTURE OF INTERMEDIATE STATIONS
AND SECRET KEY RATE

A. One-way stations and basic mechanism

Let us consider transmission of a logical qubit using a set
of single-photon polarization qubits with repeater stations that
perform quantum error correction as in Fig. 1. Suppose that
the error correction works with a success probability P0 and

gives a logical error rateE0 (averaged over phase and bit) for a
lossy segment of transmission η0 ∈ (0,1). A concatenation of
N segment and station pairs, consisting of loss segments and
repeater station units, has the net success probability

Psucc = P N
0 (3)

and the net average logical error rate

QN = 1− (1− 2E0)N
2

. (4)

Up to a factor of the protocol efficiency 1/2, the key rate
for the Bennett-Brassard 1984 (BB84) protocol with this
concatenated transmission is given by [17]

K = Psucc max [{1− 2h(QN )},0], (5)

where h(x) = −x log2 x − (1− x) log2(1− x) is the binary
entropy function. The net error of Eq. (4) comes from the fact
that a link of two binary symmetric channels with the error
rates ε1 and ε2 becomes another binary symmetric channel
with the error rate

G(ε1,ε2) := ε1(1− ε2)+ ε2(1− ε1). (6)

Suppose that the number of photonic qubits transmitted per
logical qubit isNp. Since a polarization qubit uses two modes,
the number of modes physically used in this transmission is
2Np. This implies that the key rate per mode is given by

R = K

2Np

. (7)

On the other hand, the key rate due to the direct transmission
of a single photon over the pure lossy linewith the transmission
η = ηN

0 is given by

Rd = 1
2 max{η[1− 2h(0)],0} = 1

2η
N
0 , (8)

where the factor 2 is again due to the number of optical modes.
For a long distance η � 1, the PLOB bound also gives the key
rate proportional to the overall transmission

RPLOB = log2
1

1− η
� 1.44η = 1.44ηN

0 . (9)

By comparing RPLOB and the expression in Eqs. (7), the
transmission with the intermediate stations beats the PLOB
bound if the condition K > 2NpRPLOB is satisfied. With the
help of Eqs. (3) and (5), this condition can be rewritten for a
long distance as

P0 > η0

(
2.88Np

1− 2h(QN )

)1/N
(10)

whenever 1− 2h(QN ) > 0 holds. If the logical error rate is
zero, i.e.,QN = 0, we have

P0 > η0
(
2.88Np

)1/N
. (11)

Since theN th root rapidly converges to 1 asN becomes larger,
we have a simple relation for N → ∞:

P0 > η0. (12)

Therefore, an essential necessary condition to beat the PLOB
bound is that the success probability of the station is larger than
the transmission of the associated segment. We can interpret
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the success probability as the success of the transmission, and
P0 is regarded as an effective transmission of the channel.
Thereby, the main role of the intermediate stations is to boost
the effective transmission. Another essential point is that it
becomes easier to beat the PLOBboundwhenmore stations are
placed along the total transmission line, as seen in Eq. (11). An
important model of the transmission line that fulfills QN = 0
is the pure bosonic lossy channel. In such a case, an efficient
loss error correction to fulfill Eq. (12) is sufficient to beat the
PLOB bound. Note thatN is associated with the total distance
of the transmission as

Ltot = −Latt ln η = −NLatt ln η0, (13)

where Latt is the attenuation length. In all following numerical
results we will use

Latt = 20 km. (14)

Note also that essentially the same discussion holds when
we replace the PLOB bound in Eq. (2) with the TGW bound
in Eq. (1) as it holds, for η � 1, that

RTGW = log2
1+ η

1− η
� 2.89η = 2.89ηN

0 . (15)

B. Error model

Although the loss in the bosonic channel has the dominant
impact on the quantum repeater performance, there will also
be finite errors associated with controlling matter qubits in
the intermediate stations [12]. As an effective error model, we
assume that all errors are induced through the channel and
the operations in intermediate stations are perfect. For clarity,
we assume each physical qubit suffers a physical error e as in
Fig. 1(a). The qubit channel is described by

Equbit(ρ) = (1− 2e)ρ + eZρZ + eXρX. (16)

In our simple error model we assume the error rate to be
symmetric in the sense that the qubit bit error is ez = e and

the qubit phase error is also ex = e. A similar analysis can be
performed for a depolarizing channel [12].

C. Protocol

We consider the one-way scheme [12] based on a TEC
[18,19]. This scheme is designed to transmit a logical qubit,
such as |ψL〉 = α|0L〉 + β|1L〉, encoded in the number of
Np = nm photons with

|0L〉 = 1√
2
(|+L〉 + |−L〉),

(17)

|1L〉 = 1√
2
(|+L〉 − |−L〉),

and

|±L〉 = 1√
2
(|00 · · · 0〉︸ ︷︷ ︸

m

±|11 · · · 1〉)⊗n, (18)

where n,m � 2. The smallest code uses four photons, and the
unit photon block for this case is (n,m) = (2,2). We will use
the pair “(n,m)” to specify the block size and thus the code.
Each intermediate station performs a process of the TEC

as in Fig. 2. First, we perform a quantum nondemolition
(QND) measurement for the incoming qubit block R and
identify the positions in the block where the photon is lost.
Second, we apply controlled-NOT (CNOT) gates between each
of the surviving photons and the corresponding photons
of block S. The state of the S block is assumed to be
prepared maximally entangled with the outgoing qubit block
R′, (|0L0L〉SR′ + |1L1L〉SR′ )/

√
2, before the CNOT application.

Third, we perform a physical X measurement on each
photon of block R and a physical Z measurement on
each photon of block S. We obtain the measurement out-
comes XR

i,j ∈ {±1} and ZS
i,j ∈ {±1} with i ∈ {1,2, . . . ,n} and

j ∈ {1,2, . . . ,m}, while Xi,j = Zi,j = 0 is assigned if the
index (i,j ) corresponds to the position of lost photons.

FIG. 2. A quantum-teleportation-based error-correction process transfers the logical qubit of incoming photons in the block R into a fresh
logical qubit in the blockR′ and recovers the photon loss. (i) A quantum nondemolition (QND)measurement of the photon number is performed
for each of the physical qubits in R, and the position of the photon loss in the incoming photon block R is identified. (ii) A control-NOT (CNOT)
gate is applied between each of the surviving photons in block R and corresponding photons in block S whose logical qubit is prepared to be
maximally entangled with the outgoing logical qubit in blockR′ as (|00〉SR′ + |11〉SR′ )/

√
2. (iii) A Bell measurement is implemented by logical

X and logical Z measurements performed on blocks R and S, respectively. The Pauli operators of logical qubits are decomposed into products
of Pauli X and Pauli Z of physical qubits. (iv) Finally, the Pauli frame [16] is adjusted by a unitary operation based on the Bell measurement
outcome.
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Finally, a unitary operation is performed based on the Bell
measurement outcome (M̃R

X,M̃S
Z) determined by

M̃R
X = sgn

⎡
⎣ n∑

i=1

⎛
⎝ m∏

j=1
XR

i,j

⎞
⎠

⎤
⎦, (19)

M̃S
Z =

n∏
i=1

⎡
⎣sgn

⎛
⎝ m∑

j=1
ZS

i,j

⎞
⎠

⎤
⎦. (20)

Here, sgn(x) is associated with the majority vote and assigns
{−1,0,1} depending on x < 0, x = 0, or x > 0, respectively,
while the product � is associated with the parity. If either
M̃R

X = 0 or M̃S
Z = 0, we say the Bell measurement is inconclu-

sive and discard the transmission attempt through the quantum
repeater chain.
We may classify the statistics of the outgoing qubit based

on the pattern of the QND outcomes, namely, the number of
lost photons and their location. We refer to this information
as the pattern component of the syndrome. Let Sall be the
set of all possible patterns. The performance of the TEC
process will be characterized by the syndrome probability
{wi} and logical error rates {εi} associated with the pattern
i ∈ Sall. To be specific, we are interested in the joint probability
that a recoverable pattern appears and the following Bell
measurement is conclusive, i.e., M̃X,Z �= 0, and the logical
error rate of such an event. We may call the subset of the
patterns responsible for such events informative syndromes
S0. A detailed note on how to determine this set is presented
in the Appendix. As we will see in the next section, the key
rate over a sequence of stations is determined by the observed
sequence of patterns.

D. Key rate

We will sketch how to calculate the key rate for a
sequence of N loss-segment and station pairs whose structure
is described in Fig. 1(b). We assume the BB84 protocol
corresponding to Sec. II A.
Let S0 = {1,2,3, . . . ,l} be the set of informative syndromes

of a given intermediate station. We denote by {wi}i∈S0 the set
of the success probability and by {ε(z)i ,ε

(x)
i }i∈S0 the associated

logical bit error and phase error rates. The total measurement
probability and the average error rate over the syndromes S0
can be associated with P0 and E0 in Eqs. (3) and (4) as

P0 =
∑
i∈S0

wi,

E0 = 1

P0

∑
i∈S0

wi

(
ε
(z)
i + ε

(x)
i

2

)
. (21)

In what follows we may refer to the scenario using these
averages as the coarse-graining (CG) scenario that discards
the index i of informative syndromes. Note that the analysis in
Refs. [12,13] is based on the CG scenario. On the other hand,
we may refer to the scenario using all indices of informative
syndromes as the fine-grained (FG) scenario.
For a sequence of two stations, each transmission of a

logical qubit comes with a pair of outcomes i1 and i2. This

formally specifies the process having a set of a probabilityw
(2)
i1,i2

and logical bit and phase errors ε
(2,γ )
i1,i2

with γ ∈ {z,x}. Here, 2
in the superscript indicates the number of total stations, and
the last station is Bob’s station in our notation. By construction
we can write

w
(2)
i1,i2

= wi1wi2 ,
(22)

ε
(2,γ )
i1,i2

= ε
(2,γ )
i2,i1

= G
(
ε
(γ )
i1

,ε
(γ )
i2

)
,

where the function G(εi1 ,εi2 ) is given in Eq. (6).
For a sequence ofN stations, each transmission of a logical

qubit comes with N outcomes i1,i2, . . . ,iN , and its statistical
property is formally specified by the probabilityw

(N)
i1,i2,...,iN

and

logical error rates ε
(N,γ )
i1,i2,...,iN

with γ ∈ {z,x}. This implies the
following expression for the secure key rate:

K =
∑

i1,i2,...,iN

wi1,i2,...,iN

×max
[
0,1−

∑
γ∈z,x

h
(
ε
(N,γ )
i1,i2,...,iN

)]
. (23)

For N stations, the number of possible outcomes
is lN . Hence, it seems difficult to calculate the key
rate for a large N since the number of relevant terms
{(w(N)

i1,i2,...,iN
,ε
(N,z)
i1,i2,...,iN

,ε
(N,x)
i1,i2,...,iN

)} increases exponentially with
regard to N as 2lN . However, as we can see from Eq. (6),
the permutation of indices does not change the value of
(w(N),ε(N,z),ε(N,x)). This means that we only need to calculate
the triplets whose indices are different under the permutation.
By focusing on the number of the same outcomes we can
rewrite the key rate of Eq. (23) as

K =
∑

∑l
i=1 Ni=N

w
(N)
{Ni }max

[
1−

∑
γ∈z,x

h
(
ε
(N,γ )
{Ni }

)
,0

]
, (24)

whereNi indicates the number of stations whose measurement
outcome is i and

w
(N)
{Ni } = N !

N1!N2! · · · Nl!

l∏
i=1

w
Ni

i ,

ε
(N,γ )
{Ni } = G

( · · ·G(
G

(
ε
(N1,γ )
1 ,ε

(N2,γ )
2

)
,ε
(N3,γ )
3

)
, . . . ,ε

(Nl,γ )
l

)
= 1

2

(
1−

l∏
i=1

(
1− 2ε(γ )i

)Ni

)
, (25)

where γ ∈ {z,x} and

ε
(Ni,γ )
i = 1− (

1− 2ε(γ )i

)Ni

2
. (26)

Now, we can calculate the key rate for an arbitrary N

sequence of intermediate stations from the set of the success
probability and logical error rates {wi,ε

(z)
i ,ε

(x)
i }. A detailed

procedure to determine this set for the case of the TEC station
with a given set of physical parameters (e,η0,N ) and the code
(n,m) is described in the Appendix. In the following numerical
calculations, we use a Monte Carlo method to determine the
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success probability of the whole sequence of intermediate
stations w

(N)
{Ni } from the set of success probabilities {wi}i∈S0 .

III. RESULTS

We will calculate the key rate of the TEC stations based
on the formula derived in the previous section and show their
potential as a genuine quantum repeater to provide a higher
key rate above the PLOB bound.
Our main questions are (i) whether or not the one-way

protocol due to the TEC stations can surpass the PLOB bound
and (ii) to what extent the syndrome information is significant
to boost the key rate. In addition, if the answers are affirmative,
we would ask (iii) how small a code could we use and whether
the syndrome information helps us to keep the code size
smaller. To this end, we will make a comparison between
the following three different quantities per channel use for a
couple of small-size codes: (a) the fine-grained key rate when
retaining all syndrome information, which we refer to as the
key rate of the FG scenario RFG, (b) the coarse-grained key
rate of the CG scenario RCG, and (c) the PLOB bound RPLOB
in Eq. (2). To be specific, as in Eq. (7), we define the FG rate
per mode as

RFG = K

2nm
, (27)

with K as defined in Eq. (24). Moreover, we define the key
rate per mode for the CG scenario

RCG = P N
0 max [{1− 2h(QN )},0]

2nm
, (28)

with P0 and QN as defined in Eqs. (4) and (21). This key rate
RCG is the rate averaging all informative syndromes.

A. The smallest block encoding (2,2)

Figures 3, 4, and 5 show the typical behavior of the key
rates for the smallest code (2,2) with a physical error of e =
5× 10−4, where the unit transmission is η0 = 0.97, η0 = 0.90,
and η0 = 0.81, respectively [on the basis of Eqs. (13) and (14),
the unit transmission distance is L0 = 0.61,2.1, and 4.2 km,
respectively). In each of the three graphs, we can observe
regimes where RFG beats RPLOB. In Fig. 4 (η0 = 0.90) there
is also a regime where RCG beats RPLOB, while we do not
observe such a regime in Fig. 3 (η0 = 0.97) and Fig. 5 (η0 =
0.81). Hence, the use of the syndrome information results in
a substantial difference in the parametric regime to beat the
PLOB bound.
These numerical results positively answer question (i);

namely, the one-way protocol with the TEC intermediate
stations beats the PLOB bound in a certain parametric regime.
Interestingly, even the smallest code of intermediate stations
can beat the PLOB bound. Moreover, the CG scenario has a
lower key rate than the FG scenario by construction but still has
the ability to surpass the PLOB bound. These numerical results
also imply that these statements remain essentially the same
when we use the TGWbound instead of the PLOB bound. One
can see that the TGW bound stays slightly above the PLOB
bound in Figs. 3, 4, and 5.
Regarding the second question, we can see from Figs. 3,

4, and 5 that the scenario utilizing the syndrome information

0 100 200 300 400 500

-6

-5

-4

-3

-2

-1

0

0 50 100 150 200 250 300

Number of Stations

 lo
g 

   
  o

f 
K

ey
 r

at
es

Distance Ltot (km)

TGW

PLOB

RFG

RCG

10

FIG. 3. The key rates (RTGW,RPLOB,RFG,RCG) for η0 = 0.97 as
functions of the number of stations N . At N � 220, the key rate
of the CG scenario RCG drops rapidly without any crossover to the
PLOB bound. For the FG key rate RFG, there is a crossover with the
PLOB bound RPLOB. The FG key rate shows relatively slow decay
until N � 400.

substantially extends the distance where we can find a positive
key. Note that the number of stations N is proportional to
the distance Ltot through the relations in Eqs. (13) and (14).
Figure 6 shows an overview of the whole parameter regime
where RFG and RCG surpass the PLOB bound RPLOB in terms
of the total distance Ltot and the unit transmission η0 for
e = 5× 10−4. In the shaded area, RFG > RPLOB is satisfied,
while inside the dashed loopRCG > RPLOB holds. The distance
where the key rate starts to beat the PLOB bound is not very
different betweenRFG andRCG. In contrast, the distance where
the key rate falls again below the PLOB bound for the FG
scenario is substantially longer than that for the CG scenario.
Typically, the additionally gained distance is about 200 km.
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FIG. 4. The key rates (RTGW,RPLOB,RFG,RCG) for η0 = 0.90 as
functions of the number of stationsN . ForN � 210 (Ltot � 440 km),
the CG key rate drops rapidly, whereas the FG key rate holds until
N � 300 (Ltot � 630 km).
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FIG. 5. The key rates (RTGW,RPLOB,RFG,RCG) for η0 = 0.81 of
the number of stations. The FG key rate RFG marginally goes up
to the PLOB bound RPLOB around N � 190 (which corresponds to
Ltot � 800 km), while the CG scenario could not beat the PLOB
bound.

It would be worth noting that this specific example of our
scheme beats the PLOB bound in a middle distance, such
as 200–1000 km, while the key rate of a practical single-
photon BB84 protocol using threshold detectors rapidly drops
away around 300 km with a moderate dark count rate [17].
Therefore, the code (2,2) provides possible architecture to
gain a higher key rate at such a middle distance, although it
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FIG. 6. The gray area shows the regime where the FG key rate
surpasses the PLOB bound RFG � RPLOB. The dashed area shows the
CG key rate surpasses the PLOB bound RCG � RPLOB. For the dotted
level lines η0 = 0.97 and η0 = 0.81, we can see that the CG key rate
RCG cannot surpasses the PLOB bound, while the FG key rate can
(see Figs. 3 and 5). On the other hand, the middle of these two level
lines shows a wide regime in which both RFG and RCG can surpass
the PLOB bound (see the actual behavior of the key rates for the
dotted level η0 = 0.90 in Fig. 4). Blue dashed, red dotted, and green
solid lines show the boundaries where RFG becomes 2, 4, and 10
times larger than RCG, respectively, (r := RFG/RCG). The code size
is (n,m) = (2,2), and the physical error rate is e = 5× 10−4. The
areas will shrink when the physical error becomes larger (see Fig. 7).

requires a substantial number of stations (∼200), as shown in
Figs. 3, 4, and 5.
In order to view the distinctive role of the syndrome

information for gaining a higher key rate over a set of the
parameters, we may focus on the ratio between the FG key
and the CG key,

r = RFG

RCG
. (29)

In Fig. 6, we also show the lines where this ratio r becomes
2, 4, and 10. While a higher value of r does not necessarily
mean a substantially higher key rate (because RCG itself may
be considerably small), we can ensure a moderate key rate
in some cases where we otherwise would not be able to
surpass the PLOB bound at all. Figure 6 clearly shows there
exists a parameter regime where the following two conditions
are simultaneously satisfied: (i) the use of the syndrome
information keeps a high key rate which cannot be achieved
by any direct transmission, and (ii) it boosts the key rate
significantly compared with the key rate of the CG scenario.
For a fixed total distance Ltot, we expect a higher number

of intermediate stations N would be powerful when there is
no physical error. This is because a shorter distance between
nearest stations implies a higher success probability. If there
is a finite physical error (e > 0), a higher number of stations
results in a higher total logical error rate because the total
logical error accumulates through the action of many stations
(recall the unit transmission is η0, and the number of stations
is the total distance Ltot divided by the unit distance L0 =
−Latt ln η0). On the other hand, if we separate the intervals
farther from each other, the loss will increasingly reduce the
probability of successful photon detection. Hence, given the
physical error e and total distanceLtot , there is an intermediate
optimal value of η0 to maximize the key rate. In fact, Fig. 6
shows that neither too short a unit distance nor too long a unit
distance gives the key rate better than the PLOB bound.
As the physical error rate e increases, it becomes harder

to beat the PLOB bound, as illustrated in Fig. 7. The blue
outer solid loop and outer dashed loop indicate the regimes
RFG > RPLOB and RCG > RPLOB, respectively, for e = 5.0×
10−4 (the same areas as shown in Fig. 6). Both areas shrink for
higher physical errors. The examples shown are the red inner
solid loop and the inner dashed loop for e = 7.5× 10−4).
Moreover, for e = 1.0× 10−3, there is no area to beat the
PLOB bound for the CG scenario, while we can observe a
small area for the FG scenario. We could not find such an area
when e = 1.5× 10−3 for the FG scenario.

Coupling loss. For practical applications, it is crucial
to estimate the effect of the coupling loss. Suppose that
every station exhibits the same coupling efficiency ηc for
coupling physical qubits into the channel. Then, the coupling
loss will modify the unit transmission as ηeff = ηcη0 in the
calculation of logical errors while we keep the unit distance
L0 = −Latt ln η0 the same as in Eq. (13). In Fig. 8, we show
the area surpassing the PLOB bound for e = 5.0× 10−4 and
(n,m) = (2,2) with a coupling efficiency of ηc = 0.98 and
ηc = 0.975, whereas the largest loop is the lossless case.
For a 3% coupling loss (ηc = 0.97) we could not find such
an area. Similar behavior can be observed for the case of
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FIG. 7. Areas beating the PLOB bound for the smallest block
size (n,m) = (2,2). The two largest areas for the physical error rate
e = 5.0× 10−4 (the ones in Fig. 6) shrink as e becomes higher.
For e = 1.0× 10−3 in the case of the CG scenario RCG, there is no
area where the PLOB bound can be beaten, while there still exists
a substantial area to beat the PLOB bound for the FG scenario RFG.
The right end of the loops for the FG scenario are slightly ragged due
to a numerical instability in estimating RFG.

the CG scenario in Fig. 9. The area vanishes when ηc =
0.976. Consequently, we require a high coupling efficiency
ηeff ∼ 99% and a lower physical error rate e ∼ 10−4 so that
the one-way scheme with the smallest code (n,m) = (2,2) is
experimentally feasible to beat the PLOB bound.

B. Other small-block codes [(3,2), (3,3), (4,3)]

As we have observed in Fig. 7, the physical error rate has to
be rather small to beat the PLOB bound via the smallest code
(2,2). More specifically, there is almost no hope of beating the
PLOB bound for this block size when the physical error rate is
e � 1.5× 10−3, even without coupling loss. Fortunately, we
can observe better error tolerance for larger block codes.
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FIG. 8. Areas where the FG key RFG beats the PLOB bound in
the presence of a coupling loss for the smallest code (n,m) = (2,2)
with a physical error rate of e = 5× 10−4. The largest loop shows
the case without coupling loss (ηc = 1). The area shrinks with the
existence of coupling loss. For a 3% coupling loss (ηc = 0.97) we
could not find the area.
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FIG. 9. The areas where the CG key RCG beats the PLOB bound
in the presence of a coupling loss for the smallest code (n,m) = (2,2)
with a physical error rate of e = 5× 10−4. The largest loop shows the
case without coupling loss (ηc = 1). The area shrinks due to coupling
loss. We could not find the area when the coupling loss is 2.4%
(ηc = 0.976).

The second smallest block size is (n,m) = (3,2). Figure 10
shows the areas that surpass the PLOB bound for a couple of
different physical errors e. We can find a substantially wider
area to surpass the PLOB bound than with the (2,2) code for
both the FG scenario and the CG scenario with e = 1.0× 10−3
(the green solid middle loop and the green dashedmiddle loop,
respectively). The block size (3,2) also gives a finite area for
a larger physical error rate of e = 1.5× 10−3, while there
is no such area when the error rate is e = 2.0× 10−3. The
shape of the areas becomes wider in the vertical direction

η

200 400 600 800 1000

0.80

0.85

0.90

0.95

1.00
e = 0.075% FG

e = 0.075% CG

e = 0.1%  FG

e = 0.1%  CG

e = 0.15% FC

e = 0.15% CG

FIG. 10. Areas beating the PLOB bound for a block size of
(n,m) = (3,2) with physical error rates of e = 7.5× 10−4, e =
1.0× 10−3, and e = 1.5× 10−3. For this block size, we can observe
wider areas to beat the PLOB bound compared with Fig. 7. In
particular, we find a relatively wide area for the CG scenario with
e = 1.0× 10−3 beating the PLOB bound (the middle green dashed
loop), and there exists such a regime even for a higher error rate
of e = 1.5× 10−3 (the smallest yellow dashed loop). The rightmost
boundaries for the FG scenario are jagged due to a numeric instability.
Again, for each of the physical error rates, the FG scenario always
extends the longest distance to beat the PLOB bound compared with
the CG scenario.
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FIG. 11. Areas beating the PLOB bound for a block size of
(n,m) = (3,3). The solid loops are for the FG key rate, and the dashed
loops are for the CG rates. The physical error rates are, respectively,
e = 7.5× 10−4, e = 1.0× 10−3, and e = 1.5× 10−3 from the largest
solid loop to the smallest solid loop for the FG scenario, while there
is no area for the CG scenario with e = 1.5× 10−3. Compared with
the block size of (3,2), the areas for FG key rates grow wider, while
the areas for the CG scenario rather shrink. The rightmost boundaries
for the FG scenario are jagged due to the numeric instability.

compared with that of the (2,2) code. This implies that the
unit transmission distance between the nearest stations could
be larger. Intuitively, the (3,2) code has a better loss tolerance
than the (2,2) code. This is because the (2,2) code is unable
to maintain the qubit information for the loss of two photons,
while the (3,2) code still has a certain potential for recovering
from two photon loss. Note that the right end of the loops for
the FG scenario are ragged due to the numerical instability in
estimating RFG.
We can observe wider areas for beating the PLOB bound

with relatively higher errors by using larger codes. Figure 11
shows the case of the (3,3) code. In this case, the CG
scenario results in smaller areas to beat the PLOB bound
when it is compared with the areas for the (3,2) code of
Fig. 10. Notably, the area vanishes when we use the (3,3)
code for e = 1.5× 10−3, although the use of the syndrome
information smoothly widens the area. In general, the CG
scenario unnecessarily smears out the qubit information kept
by the measurement outcomes of intermediate stations, and
thus, we find that making use of fine-grained information can
be valuable. Nevertheless, the CG scenario has already shown
significant performance improvement over a long distance for
high coupling efficiency and low error rates [13].
The shape of the areas depends on both the block size and

the error rate. Figure 12 shows the area to beat the PLOBbound
for the case of the (4,3) code. An interesting feature observed
in this code is that the area at a higher unit transmission grows
significantly over longer distance and covers a relatively wide
range of η0 and Ltot, although it still requires an order of 10−3
physical error rate. In the case of e = 1.0× 10−3, we observe
a relatively slow decay of the upper end of the loop along
with the line η0 = 1, which holds over a distance of 1000 km.
As we have already mentioned in Sec. II A, a better signal
transmission over a long distance can be achieved when there
are no channel errors by using many stations with short unit

η
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e = 0.15%  CG
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e = 0.25%  CG

(

FIG. 12. Areas beating the PLOB bound for a block size of
(n,m) = (4,3). Solid loops are for the FG scenario, whereas the
dashed loops are for the CG scenario. The physical error rates are,
respectively, e = 1.0× 10−3, e = 1.5× 10−3, and e = 2.5× 10−3

from the largest loops to the smallest loops. A distinguishing feature
is the growth of the areas toward the distance direction around
η0 ∼ 0.97. This suggests that one can obtain better performance by
using many intermediate stations with a short unit distance. The
rightmost boundaries are jagged due to the numeric instability.

distances. This is because the loss errors can be corrected well
if the distance between the stations is short. The growth and
slow decay along the line η0 = 1 here is regarded as a concrete
example of such an advantage invoking the PLOB bound.
The slow decay has also been observed for codes (3,2) and
(3,3), although it does not reach the long distances over 1000
km (there, the longest distance to surpass the PLOB bound
is achieved with a rather low unit transmission, η0 ∼ 0.85).
Therefore, the graphs in Figs. 10, 11, and 12 signify the main
advantage of using intermediate stations for high-rate secret
key generation with relatively small block size codes.

C. Interpretation as effective quantum channels

The performance of the CG scenario can be obtained by
a modification of the procedure of the intermediate stations
such that they do not announce the success or failure but
send vacuum states for the case of inconclusive events. With
this modification the stations act as quantum channels. This
constructively proves that there exists a quantum channel
(completely positive trace-preserving map) which works as
a repeater station; namely, a sequence of intermediate stations
which works without transmission of classical information can
beat the TGW bound as well as the PLOB bound. This is in
sharp contrast to the no-go result for the Gaussian-channel
stations [10].

IV. SUMMARY

We have analyzed potential protocols to utilize TEC one-
way quantum repeater stations to increase the key rate over
lossy channels beyond the fundamental bounds as given by
the TGW bound and the PLOB bound. We have shown
how to calculate the secret key rate of one-way intermediate
stations when the syndrome information of each station is

052304-8



ROLE OF SYNDROME INFORMATION ON A ONE-WAY . . . PHYSICAL REVIEW A 94, 052304 (2016)

fully available. As a general benchmark for potential quantum
repeaters, we have compared the performance of the one-way
scheme with the PLOB bound and numerically identified the
parametric area in which our scheme surpasses the PLOB
bound for a couple of small-block-size codes. We have
observed that even the smallest-block-size code (n,m) = (2,2)
with the CG scenario enables us to beat the PLOB bound in
a middle distance, although one needs low physical errors
e ∼ 10−4 and small coupling loss, such as 1%. The number
of intermediate stations is typically a few hundred. In our
observation, the use of syndrome information helps us to beat
the PLOB bound for longer distances and enables obtaining
a substantially higher secret key rate. Our results suggest that
the error tolerance will be improved by using larger blocks.
For instance, it has been shown that there is a substantially
broad area to surpass the PLOB bound with the (4,3) code
for physical errors around e ∼ 10−3. In this block size, we
have observed that the distance attained by making use of
the syndrome information is significantly longer than the CG
scenario. In turn, the performance of the CG scenario has
constructively proven the existence of a quantum channel that
works as a quantum repeater. In our construction with the
(2,2) code, the quantum channel acts on four photonic qubits
and is regarded as an eight-mode quantum channel, while it is
known [10] that Gaussian channels cannot work as quantum
repeaters even if we are allowed to use arbitrarily manymodes.
It remains open whether the minimum number of the modes to
construct an untended repeater station could be less than eight.
Overall, we have observed several different aspects to highlight
the potential performance of QKD with one-way intermediate
stations by delving into a couple of small-block-size codes
with a set of specific physical error rates. We believe our
results are helpful for designing useful architecture for QKD
with one-way intermediate stations in the long run.
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APPENDIX: SUCCESS PROBABILITIES AND ERROR
RATES OF A TEC STATION

In this Appendix, given a code of the TEC stations (n,m)
and the error model of Sec. II B, we show how to determine
the set of the success probability and logical error rates for a
TEC station described in Fig. 2. See Ref. [12] further details
about the TEC stations.

1. Classification of photon-loss patterns

We consider a unit of an n × m block of photonic qubits.
We may call a row a subblock, which hasm qubits; hence, the
total number of subblocks is n. We may also use the notation
(n,m) to specify the block size. In what follows, suppose that
a block size (n,m) with n,m � 2 is given.
Due to the transmission loss, each qubit arrives at the next

station with the probability of η0. Let nLP denote the number
of lost photons. For a block of nm photons, the probability
that narri = nm − nLP photons arrive at the station can be

FIG. 13. Classification of patterns. The white circles indicate
the position of a lost photon. For this example, the block size is
(n,m) = (7,6), and the classifying index is determined to be 
u =
(u0,u1,u2,u3,u4,u5,u6)T = (3,1,2,1,0,0,0)T . This implies nLP =∑m−1

k=0 kuk = 8.

written as

pnLP
:=Prob[narri = nm − nLP ]

=
(

nm

nLP

)
η

nm−nLP

0 (1− η0)
nLP . (A1)

All patterns of arriving photonic qubits can be classified
by a vector 
u := (u0,u1, . . . ,um−1)T , where uk represents the
number of subblocks (rows) with (m − k) arriving photons
(see Fig. 13). We will sort a given pattern into a sorted form by
moving the position of lost photons to the right sidewithin each
of subblock and shifting subblocks that have a larger number of
photons upward. Then, from the sorted form we can determine
the vector 
u as in Fig. 13. It has to fulfill ∑m−1

k=0 uk = n and
u0 � 1 in order to satisfy that (i) at least one qubit must arrive
for each subblock and (ii) at least one subblock must arrive
with no loss, respectively. These conditions also imply an
acceptable number of lost photons is

nLP � (n − 1)(m − 1), (A2)

where the number of lost photons can be expressed in terms
of 
u as

nLP (
u) =
m−1∑
k=0

kuk. (A3)

We refer to the patterns that fulfill conditions (i) and (ii) as
“acceptable” or “informative” patterns. For the informative
patterns, one can basically correct loss errors and recover the
logical qubit in the absence of other types of errors [12]. In
practice, there are inconclusive events in which the slot is
discarded even though the pattern is acceptable. We denote
the rate that a sorted pattern corresponding to 
u results in a
conclusive event as qconc|
u. We set qconc|
u = 0 if 
u cannot be
assigned from acceptable patterns. The complete form of this
rate is determined later in Eq. (A21).
Given an expression of the vector 
u, any acceptable pattern

can be generated from the sorted form by combining (i) a
permutation of subblocks and (ii) a permutation of the photon
locations within each of the subblocks. Hence, the number
of possible patterns that gives a specific form of 
u can be
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written as


[
u] :=
(

n

u0,u1,u2, . . . ,um−1

) m−1∏
s=1

(
m

s

)us

=
(

n

u0

) m−1∏
s=1

(
n − ∑s

k=1 uk−1
us

)(
m

s

)us

. (A4)

Given the number of lost photons nLP , the patterns
associated with 
u appear with the probability of

P
u|nLP
= 
[
u](

nm

nLP

) . (A5)

Let EZ|
u and EX|
u be the logical bit error rate and phase error
rate associated with 
u, respectively. The key rate for a single
station can be calculated as∑


u
pnLP

qconc|
uP
u|nLP
max[1− h(EZ|
u)− h(EX|
u),0]

=
∑


u
qconc|
u
[
u]η0nm−nLP (1− η0)

nLP

×max[1− h(EZ|
u)− h(EX|
u),0], (A6)

wherewe use Eqs. (A1) and (A5) and nLP is given as a function
of 
u as in Eq. (A3). In the following part of this appendix, we
show how to determine qconc|
u, EZ|
u, and EX|
u.

2. The logical measurement outcomes

In the TECprocess, we perform individualXmeasurements
whose outcomes are denoted byXR

i,j for the incoming blockR

and individual Z measurements whose outcomes are denoted
by ZS

i,j for the local block S (see Fig. 2). We set Xi,j = 0 and
Zi,j = 0 if no photon is detected at the position (i,j ) in the
QND measurement. The logical measurement outcomes are
determined by

M̃R
X = sgn

⎡
⎣ n∑

i=1

⎛
⎝ m∏

j=1
XR

i,j

⎞
⎠

⎤
⎦, (A7)

M̃S
Z =

n∏
i=1

⎡
⎣sgn

⎛
⎝ m∑

j=1
ZS

i,j

⎞
⎠

⎤
⎦. (A8)

Here, sgn(x) is associated with the majority vote and assigns
{−1,0,1} depending on x < 0, x = 0, or x > 0, respectively,
while the product � is associated with the parity. If M̃ = 0,
we discard the slot.

3. Logical X errors

According to our model in Sec. II B, each qubit of the R

block suffers the phase error ex . Hence, XR
i,j flips with the

probability ex . If allm qubits of ith subblock arrive, the parity
of the ith subblock

∏m
j=1 XR

i,j is faithfully observed with the
probability of

fX0 =
� m
2 �∑

k=0

(
m

2k

)
(1− ex)

m−2ke2kx , (A9)

where �·� stands for the floor function.

Let nM be the number of subblocks whose photons all
arrived. (Only those blocks join the majority vote.) The
probability that the majority vote faithfully gives the logicalX
is

FX|
u =
� nM −1

2 �∑
k=0

(
nM

k

)
f

nM−k
X0 (1− fX0)

k. (A10)

Recall that the number of full subblocks is specified by the
first element u0 of the vector 
u. The majority vote will result
in a draw with the probability of

DX|
u =
{(

nM

nM/2

)
[ex(1− ex)]nM/2, nM is even,

0, nM is odd.
(A11)

Since we discard the draw events, the success probability
changes by a factor of

Pconc,X|
u := 1− DX|
u. (A12)

After discarding the draw results, the fidelity of the logical X
is given by

FtotX|
u = FX|
u
1− DX|
u

. (A13)

This implies the logical X error

EX|
u = 1− FtotX|
u = 1− DX|
u − FX|
u
1− DX|
u

. (A14)

4. Logical Z errors

According to our model in Sec. II B, each qubit of the R

block suffers the bit error ez. This implies that qubits in the
position of the arriving photons of the S block suffer the same
bit errors ez due to the action of the CNOT gates. In order to
determine logical Z we first execute a set of majority votes
and then determine logical Z by taking the parity.
If the number of arriving photons of the ith subblock is

mM,i , the majority vote of this subblock is faithfully obtained
with a probability of

fZ,i|
u =
� mM,i−1

2 �∑
k=0

(
mM,i

k

)
(1− ez)

mM,i−kek
z . (A15)

For each subblock, we can write the probability that the
majority vote is a draw,

dZ,i|
u =
{(

mM,i

mM,i/2

)
[ez(1− ez)]mM,i/2, mM,i is even,

0, mM,i is odd.
(A16)

Like for Eq. (A10), let us define

FZ,i|
u = fZ,i|
u
1− dZ,i|
u

. (A17)

Since we discard the draw events, the success probability
changes based on the set of factors:

Pconc,Z,i|
u := 1− dZ,i|
u, (A18)

where i ∈ {1,2, . . . ,n}.
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Since we take the parity of n subblocks, the fidelity of the
logical Z after discarding the draw results is given by

FtotZ|
u =
� n
2 �∑

k=0

( n

2k)∑
j=1

⎡
⎣∏

i∈s2kj

(1− FZ,i|
u)
∏
i∈s̄2kj

FZ,i|
u

⎤
⎦, (A19)

where s(2k) = {s(2k)j }j=1,2,...,( n

2k) denotes the set of all possible
subsets of s0 = {1,2,3, . . . ,n − 1,n} with the number of
elements 2k [the length of each s

(2k)
j is 2k, and j runs from 1

to
(

n

2k

)
]. We also define s̄

(2k)
j = s0 \ s

(2k)
j . Then, the logical Z

error is given by

EZ|
u = 1− FtotZ|
u. (A20)

5. Rate for conclusive events

Using Eqs. (A12) and (A18), for any acceptable pattern
associated with 
u, we can assign the pair of the logical bits

(X,Z) with the rate

qconc|
u =Pconc,X|
u
n∏

i=1
Pconc,Z,i|
u, (A21)

and we set qconc|
u = 0 if 
u is not associated with an acceptable
pattern.
Now, the set of the success probability and logical error

rates {wi,ε
(z)
i ,ε

(x)
i } for our TEC stations is given by relabeling

the index i → 
u as
w
u = pnLP

qconc|
uP
u|nLP
,

ε
(z)

u = EZ|
u,

ε
(z)

u = EX|
u. (A22)

From this triplet, we can determine the key rate for a sequence
of intermediate stations by using Eqs. (24), (25), and (26).
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