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We consider a dynamic programming approach for the systematic optimization
of standard quantum repeater protocols. For the specific optimization problem we
choose to fix the distance and fidelity of a desired entangled pair (a fundamental
resource for long-distance quantum communication) and attempt to minimize the
time required to create such a pair. Taking advantage of the natural self-similar
structure of quantum repeaters we can find a near-optimal solution to this problem
without searching an exponentially growing space of solutions.

1. DESCRIPTION OF THE OPTIMIZATION PROBLEM

A standard problem in quantum communication is the fast generation of high fidelity
entangled pairs at long distances. Quantum repeaters attempt to solve this problem
in a time polynomial in the distance (overcoming fiber attenuation losses) by using a
quantum memory and local quantum operations to purify and connect smaller distance
pairs. In this paper we discuss progress towards optimization of two repeater protocols:
the BDCZ protocol [1] and the CTSL protocol [2]. While the detailed results await a
later publication [3], here we outline the necessary mathematical formulae for solving
the optimization problem for the (simpler) BDCZ protocol, and consider specifically the
role detector and readout efficiency play in the scaling properties of optimized repeater
protocols, with specific examples.

We use computer-aided dynamic programming [4] to minimize the time to generate
entangled pairs for specific distances and final fidelities. This approach takes advantage
of the self-similar structure of the repeater protocol. In particular, we will find optimal
approaches for the generation of shorter range pairs, which form the building blocks for
generating longer range pairs. Thus, a computer may exhaustively search of a wide range
of parameters for each recursive level of the procedure without incurring exponential
overhead in the total number of repeater nodes.

We follow the notations of Ref. [2]. There are two types of entangled pairs used in
the BDCZ protocol: type-A pairs, which are purified pairs used for the next level of the
protocol, and type-B pairs, unpurified intermediate pairs used to purify type-A pairs. In
either case, the process is repeated recursively to build long-range entanglement [1, 2],
with the final A pair being the desired entangled state.

The control parameters to generate a purified type-A pair with distance n are

1. m – number of continuous successful entanglement pumping steps required to obtain
a purified pair



2. k – during generation of type-B pair, the separating node at which two lower level
of type-A pairs are generated. The two lower level type-A pairs span from node 1
to k, and from k + 1 to n, respectively. The two type-A pairs have distance k and
n − k respectively.

Finally, our approach will be to create a table of solutions for given distances n′ ≤ n
and a range of fidelities {F} = {0.8, 0.805, . . . , 0.99, 0.995}. These solutions, in turn, will
be used as the building blocks for generating the next elements of the table for distance
n + 1. Proceeding inductively, the overall optimization procedure will take a time O(n2)
and require recursive formulae for the generation time given a target fidelity. In the
remainder of the paper, we consider these formulae, then analyze the dependence of the
optimized protocol on detector efficiency and its performance at very long ranges.

2. RECURSIVE FORMULA FOR THE BDCZ PROTOCOL

For type-A pair, the average time for generating a pair of fidelity F
(n)
A at distance n

depends upon the success of m purification steps each using a type-B pair of fidelity F
(n)
B,i :
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where tC is the nearest-neighbor communication time and PS(j) is the success probability
for the jth step of purification. Practically, we can set all the fidelities of type-B pairs to
be equal, F

(n)
B ,j = F

(n)
B ; then the above formula reduces to:
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with fidelities of the purified pair after j consecutively successful purifications

F
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where the function P ({F1, F2} , η, p) calculates the fidelity of the output pair of a success-
ful purificaiton, which uses two entangled pairs (of fidelity F1 and F2) and imperfect local
operations characterized by η and p. The success probability for the jth purification is
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To find the optimal (minimum) time T ∗
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We can further decompose the above optimization problem into two sub-problems by
assuming that in order to generate type-A pair in minimal time, we generate type-B pair
with the required fidelity also in minimal time.

Thus, for a type-B pair
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with fidelities of the unpurified pair
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The function C ({F1, F2, · · · , Fh} , η, p) calculates the fidelity of the entangled pair from
connecting h entangled pairs with fidelities {F1, F2, · · · , Fh} by imperfect local operations
characterized by η and p [2].

The optimization takes place by defining the optimal times
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for each distance and fidelity pair.
The recursive relations end for n = 2 (nearest neighbor) type-B pairs. These are

unpurified entangled pairs between neighboring repeater nodes, created by direct entan-
glement generation. The parameters for the entanglement generation process determines
the relation between the average generation time, τe, and fidelity of the entangled pair
between two neighboring stations, F0:

F0 = F0 (τe) =
1

2

{

1 +

[

1 −
L0

τec
eL0/Latt

]2(1−ε)/ε
}

, (9)

where the second equality assumes the specific entanglement generation scheme from
Ref. [2].

3. DEPENDENCE ON PHOTON DETECTION EFFICIENCY

We now consider entanglement generation schemes which use single photons to gen-
erate entanglement between quantum memories two neighboring repeater stations. In
reality, the collection and detection of single photons has finite efficiency, which not only
slows down the entire entanglement generation process, but also reduces the fidelity of
the generated entanglement pairs.

The overall efficiency is the product of all efficiencies throughout the optical path
and detector, ε = εcεd, where εc and εd are the collection and detection efficiencies,
respectively. For different values of efficiency ε, we plot fidelity v.s. time curves according
to F0 (τe) relation (Eq.(9)) in Fig. 1a.
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Figure 1: (a) Time vs. fidelity for nearest neighbor entanglement generation at efficiencies
ε = 0.2, 0.8, 0.99 (from top to bottom). The distance between neighboring stations is
L0 = 10km, and fiber attenuation length is Latt = 20km. (b) Unoptimized (dashed) and
optimized time (solid) vs. final fidelity for distance L = 1280km for the BDCZ protocol,
with efficiencies ε = 0.2, 0.8, 0.99 (from top to bottom).

In Fig. 1b, we plot the optimized time versus final fidelity at a distance L = 1280km.
From the plot we can infer that efficiency of 80% is needed in order to create distant pair
(F > 0.9) at rate fast than 10 pairs per second. For reasonable efficiency of 20%, we are
able to create distant pair at rate 1 pair per second. Our optimized results are a factor
of ten improved over the original protocol.

4. FIDELITY ATTRACTORS IN THE BDCZ PROTOCOL

We consider possible underlying rules for the optimized implementations. One way
to illustrate a specific rule for optimized implementation is by studying the optimized
implementations of BDCZ protocol for power-of-two distances L = 2nL0. We focus on
the number of consecutively successful pumping steps mr needed for quantum repeater
at level r (i.e. distance Lr = 2rL0 for simple bipartition), with r = 0, 1, · · · , n.

To isolate and identify the rules from our optimized implementation, we only optimize
over the parameters of {mr}r. Specifically, (1) the quality of the local operations are
characterized by η = 0.995 and p = 0.995 (Defined in Ref [1, 2]); (2) we do not optimize
over the pair generation between nearest stations, but instead set F0 = 1, τe = 1, and
the communication time tc = 1/10; (3) we do not optimize the process of entanglement
connection, but instead apply symmetric bipartition rule (that is two identical distance-l
pairs are connected to create a distance-2l entangled pair, and entangled pair at level-r
has distance Lr = 2rL0). Since F0 = 1, there is no need to pump at the zeroth level, and
m0 = 0. Therefore, only n parameters, {mr}r=1,··· ,n, need to be optimized.

Suppose we want to produce entangled pair at level n = 50, and want to compare the
optimized implementations for different final fidelities. In Fig. 2, we use a color coding
scheme to plot optimized implementations. Each row in Fig. 2 represents an optimized
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Figure 2: Plaquette plot (Ffinal vs. level) of optimized implements for BDCZ protocol
with distance L = 250L0.
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Figure 3: (a) Time scaling for different final fidelities. (b) Fidelity trajectories. The
fidelity attractor Fattr ≈ 0.965. (c) Plot of K (F ).

protocol to achieve the final fidelity Ffinal for that row. The sequence {mr}r=0,··· ,n is
represented by different colors for each plaquette. Therefore, the number of puming steps
needed for rth level in the optimized implementation to create entangled pair with fidelity
Ffinal can be readout from the plaquette at the row of Ffinal and the column of r.

There is an obvious pattern of {mr} which is common for a range of values of Ffinal.
All the other rows share the same mr’s for r ≤ 35. For 36 ≤ r ≤ 44, the mr’s have similar
behavior for neighboring rows. This suggests an underlying rule dictates the choice of mr.

To understand these patterns, it is helpful to plot the fidelity trajectories (fidelity v.s.
level) for the optimal implementations (Fig. 3b). Due to the strong similiarity among
these implementations, these fidelity trajectories overlap. Apart from the end of the
fidelity trajectories (i.e. in the last few levels), the trajectories all oscillate around some
fixed fidelity (e.g. Fattr ≈ 0.965), which we call the fidelity attractor.

The value of the fidelity attractor is determined by the balance between the gain in



fidelity and the overhead in time. Suppose the fidelity attractor exist, then it should give
the minimum time overhead from distance l to distance 2l. As the creation time grows
faster than linear growth with distance, we keep only the leading super-linear parts of
Eqs. (2,5)
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where the second equality comes from our choice (in this section) to only optimize over
entanglement purification, not connection. The optimal time for generating a type-A pair
at distance n is
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We plot K (F ) in Fig. 3c, which gives the minimun at Fattr = 0.966, consistent with the
fidelity attractor obtained from dynamic programming.

5. CONCLUSIONS

We have use computer-aided dynamic programming to optimize the BDCZ quantum
repeater protocol. Even for poor detector efficiencies (∼ 20%), we find pair-per-second
generation at 1280km, a factor of 10 improvement over the original scheme. Furthermore,
for long distances optimal approaches appear to target a specific fidelity for intermediate
distances regardless of the final, desired fidelity.
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