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We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger
Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum
theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic
conditions where the drift of the phase of the laser interrogating the atoms is the main source of
decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an
incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while
extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new
protocol with existing state of the art interrogation schemes, and identify the precise conditions under
which entanglement provides an advantage for clock stabilization: it allows a significant gain in the
stability for short averaging time.
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Currently, atomic clocks based on optical transitions
achieve the most precise [1–3] and accurate [2,4] frequency
references. Additionally, the development of optical fre-
quency combs [5–8]—establishing a coherent link between
the optical and radio frequencies—enabled the application
of optical frequency standards to a wide range of scientific
and technological fields including astronomy, molecular
spectroscopy and global positioning systems (GPS).
The improvement of frequency standards using quantum

resources, such as entanglement [9–13], has been actively
explored in recent years. While clock protocols based on
uncorrelated atoms at best achieve a stability scaling
∝ 1=

ffiffiffiffi
N

p
, where N is the number of atoms—a scaling

commonly known as the standard quantum limit (SQL)
[14]—the use of entangled resources, in principle, allows
one to surpass this limit. However, a characterization of the
improvement obtainable by using entanglement requires a
detailed investigation of the decoherence present in the
system. Previous studies have focused on two kind of noise
sources: (i) single particle decoherence resulting from
the interaction of the atoms with the environment and
(ii) frequency fluctuations in the laser used to excite the
clock transition [in the following also referred to as local
oscillator (LO)]. It is well known that fully entangled
states (e.g., Greenberger-Horne-Zeilinger [GHZ] states)
allow for improved spectroscopic sensitivity, but in the
same way that these states benefit from their increased
sensitivity in the laser interrogation, they are generically
prone to various types of noise sources canceling any
quantum gain. It has therefore been long believed that such
states fail to increase clock stability regardless of the noise

model being used [12,16–18]. On the other hand, it has
been shown that for clocks with local oscillator noise
limited stability, the use of moderately squeezed atomic
states can yield amodest improvement over the SQL [10,11].
A recent study demonstrated further that, in principle, highly
squeezed states could achieve Heisenberg-limited stability
(i.e., a 1=N scaling with the available resources representing
the ultimate limit allowed by the laws of quantummechanics
[19]) using a complex adaptive measurement scheme [13].
At the same time, it has been shown that the single
particle decoherence-limited regime can be reached for
long averaging time at a logarithmic cost in N by inter-
rogating uncorrelated atomic ensembles for suitably chosen
times [20,21].
In this Letter, we introduce a protocol involving groups

of sequentially larger GHZ states to estimate local oscillator
deviations from the atomic reference in a manner reminis-
cent of the phase estimation algorithm [22]. Furthermore,
we unify previous treatments of decoherence for atomic
clocks and incorporate previous proposals involving uncor-
related atoms to effectively narrow the LO linewidth
[20,21] and thereby identify ultimate limits to the stability
of atomic clocks based on entangled atoms. We find that
for LO-noise-limited clocks, the proposed quantum proto-
col is found to be nearly optimal, realizing the Heisenberg
limit of clock stability up to a logarithmic correction in
the particle number. Importantly, it reaches the funda-
mental noise floor resulting from individual dephasing of
the clock qubits N times faster than the best known
classical schemes, where N is the total number of particles
employed.
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The central idea of our approach can be understood
as follows. In modern atomic clocks, the frequency of a LO
is locked to an ultranarrow transition of the clock atoms
serving as the frequency reference. The long-term stability
of such a clock after a given total averaging time τ is
directly related to the precision by which the accumulated
laser phase relative to the atoms can be determined. To this
end, the phase is repeatedly measured in a standard Ramsey
protocol [15]: using the LO, the clock qubits are prepared
in a superposition of j1i and j0i, denoting the levels of the
clock transition. After the qubits evolve freely for a time T
(Ramsey interrogation time), they are subsequently mea-
sured in an orthogonal basis (j�i≡ j1i � j0i), which
yields an estimate of the accumulated phase difference
between the LO and the atomic frequency reference. It is
known, that since each of these Ramsey sequences intro-
duces measurement noise, it is optimal to extend the
Ramsey time T to its maximum value T → τ [23].
A single GHZ state consisting of N entangled atoms—

whose state after the interrogation is jGHZiT ∝
j0i⊗N þ expð−iNΦLOÞj1i⊗N—accumulates the laser phase
(denoted by ΦLO) N times faster than an uncorrelated state,
allowing a more precise phase measurement [19]. However,
fluctuations in the laser frequency renders the laser phase a
random variable with a probability distribution that grows
in width as we increase the Ramsey time T. Whenever the
laser phase realized in a particular Ramsey cycle induces
a full phase wrap on the state [i.e., the atomic phase
NΦLO∉½−π; πÞ] a subsequent measurement yields a 2π
error in the estimation. For a single GHZ state, this
accounts for a strict limitation on the maximally allowed
Ramsey time in order to limit the initial variance of ΦLO,
and the resulting laser stability is found to yield no
improvement over classical protocols [18].
To address this problem, we use a protocol involving an

incoherent version of the phase estimation algorithm [22],
similar to the one outlined in [24] but adapted to be
applicable also when the frequency fluctuates and phases
exceed 2π. The phase estimation algorithm has recently
been successfully applied experimentally for global inter-
ferometric phase estimation [25,26], and its use in clock
synchronization protocols has been discussed [27]. Here,
we demonstrate how the same techniques can be applied to
guarantee optimal laser stability by allowing the Ramsey
interrogation time to be extended to its maximum value.
Let us assume, for the moment, that the accumulated

laser phase after the interrogation time T lies in the interval
ΦLO ∈ ½−π; πÞ, and has an exact binary representation
ðΦLO þ πÞ=2π ¼ P

M
j¼1 Zj=2j, with digits Zj ∈ f0; 1g

(both conditions will be relaxed below). One can then
readily show that a GHZ state consisting of 2M−1 atoms
picks up the phase ΦM−1 ¼ 2M−1ΦLOmod½−π; πÞ ¼
πðZM − 1Þ. Thus, by measuring if the phase is 0 or π,
the last digit of the laser phase can be determined. However,
without the remaining digits this information is useless.

In our protocol, these digits are found by an additional,
simultaneous interrogation with successively smaller GHZ
states of 2M−2; 2M−3; � � � entangled atoms (see Fig. 1). Each
of these states picks up a phase proportional to its size
Φj ¼ 2jΦLOmod½−π; πÞ, and this phase gets a contribution
of πðZj − 1Þ. By distinguishing whether the phase is shifted
by π or not, we can determine the value of the bit Zj. The
combined information provides an estimate with an accu-
racy given by the largest GHZ state, while the cascade
increases the total number of atoms employed only by a
factor of two:

P
M−1
j¼0 2j ≈ 2M ¼ 2 × 2M−1.

However, in the limit of large averaging times, the
assumption ΦLO ∈ ½−π; πÞ is not justified anymore.
Here, the optimal Ramsey time T ∼ τ can attain values
that induce phase wraps of the laser itself, causing the
binary representation of the laser phase to contain digits
Zj ≠ 0 for j ≤ 0, which are inaccessible to the technique
discussed above. To overcome this, we extend the cascade
to the classical domain, and employ additional groups of
uncorrelated atoms that interrogate the laser with succes-
sively decreasing interrogation times, or alternatively, using
dynamical decoupling techniques [20,21,28]. Each of these
ensembles acquires a phase that is reduced by multiples of
two from the laser phase, and thus, following the arguments
from above, allows one to gain information on the digits Zj
with j ≤ 0. The information of all digits combined provides
the total number of phase wraps, which in turn yields a
Heisenberg-limited estimate of the laser phase. By this, the
protocol effectively eliminates all limitations arising from

FIG. 1 (color online). The proposed clock operation scheme
employsM different groups of clock atoms prepared in correlated
states of varying size to interrogate the relative phase ΦLO of the
LO field. A single group j contains n0 independent instances of
GHZ-like states, each entangling 2j qubits, and therefore accu-
mulating a phase Φj ¼ 2jΦLOmod½−π; π� during a single cycle.
Each group is then used to measure this phase, which gives a
direct estimate on the digit Zjþ1 in a binary representation of the
LO phase ðΦLO þ πÞ=2π ¼ ð0.Z1Z2Z3…Þ, subsequently used to
feedback the LO frequency.
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the LO noise, and allows the Ramsey time to extend to its
optimal value.
In the following, we provide a derivation of the above

results combined with feedback analysis that allows us to
characterize the achievable stability of a clock using our
protocol. Modern clocks periodically measure the fluctuat-
ing LO frequency ωðtÞ against the frequency standard ω0

of the clock atoms to obtain an error signal. After each
Ramsey cycle of duration T [i.e., at times tk ¼ kT
(k ¼ 1; 2 � � �)], the measurement data yield an estimate
of the relative phase, ΦLOðtkÞ ¼

R tk
tk−T dt½ωðtÞ − ω0�, accu-

mulated by the LO. This estimate in turn is used to readjust
the frequency of the LO: ωðtkÞ → ωðtkÞ − αΦest

LOðtkÞ=T,
where Φest

LOðtkÞ represents a suited estimator of the phase
ΦLOðtkÞ [29], and α < 1 is an suitably chosen gain.
The stability of the actively stabilized LO, after a total

averaging time τ, is characterized by the Allan deviation
(ADEV), which is directly proportional to the measurement
uncertainty ΔΦLOðtkÞ after each Ramsey cycle (see the
Supplemental Material [30]),

σyðτÞ≡ 1

ω0τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXτ=T
k¼1

Xτ=T
l¼1

T2hδω̄kδω̄li
vuut ≈

1

ω0

ffiffiffiffiffiffi
τT

p ΔΦLOðTÞ:

(1)

Here, δω̄k ¼ ΦLOðtkÞ=T is the average detuning of the
(stabilized) LO during the kth cycle. To obtain Eq. (1), we
use the fact that after the frequency feedback the detuning
averages become approximately uncorrelated for realistic
laser spectra, hδω̄kδω̄li ≈ hδω̄2iδkl [2,21,31]. Other noise
sources (such as the bias of the linear estimator, the Dick
effect, or a suboptimal gain α [32]) are not fundamental,
and neglected in the following.
For small values of the accumulated Ramsey phase, the

ultimate precision by which this phase can be estimated is
determined by the Cramér-Rao bound [19,33] which links
the estimation error to the quantum Fisher information
(QFI) ΔΦLO ∼ 1=

ffiffiffiffi
F

p
(for a review, see [19]). The QFI, F ,

is maximized, e.g., by the use of GHZ states for which
F ∼ N2. In clock stabilization, however, the LO frequency
fluctuations account for the fact that the accumulated
Ramsey phase is a random variable which can obtain large
values, inherently violating the small phase assumption
of the Cramér-Rao bound. In particular for a single
GHZ states, phase wraps of the atomic phase, ΦðtkÞ ¼
NΦLOðtkÞ∉½−π; πÞ, cannot be detected. Consequently,
the cycle time T has to be chosen such that the prior
distribution of ΦðtkÞ is well localized within ½−π; πÞ. This
limits the maximally allowed Ramsey time to a value
Tmax ∼ γ−1LO=N

2 (see the Supplemental Material [30]),
where we assumed a white frequency noise spectrum of
the LO, SωðfÞ ¼ γLO (for 1=f noise one finds the less
stringent condition Tmax ∼ γ−1LO=N). In most cases, this
value lies below the optimal (i.e., maximal) value implied
by Eq. (1) T ∼ τ, resulting in a laser stability for GHZ states

which shows no improvement over the stability achieved
with uncorrelated atoms [12,18].
However, unlike the individual particle noise resulting in

the finite atom linewidth γind, the LO frequency fluctuations
affect all clock atoms alike, and this collective noise does
not represent a fundamental metrological limitation. We
can use a cascade of GHZ states of varying size to measure
the ΦLO in a binary representation, as discussed above. In
general, the phase does not have an exact binary repre-
sentation ending at the digit ZM. We therefore employ n0
duplicates at each level of the cascade (as opposed to
sequential procedure suggested in [24]) (n0 ¼ N=P

M−1
j¼0 2j ≈ N=2M) to improve the precision. In the case

where all digits Zj (j ¼ 1…;M − 1) are determined cor-
rectly according to the relation,

Zj ¼ ½2ðΦj−1 þ πÞ − ðΦj þ πÞ�=2π; (2)

the last group (j ¼ M − 1) then yields a Heisenberg-limited
estimate of the LO phase with accuracy ðΔΦLOÞpr ¼
1=ð2M−1 ffiffiffiffiffi

n0
p Þ ¼ 2

ffiffiffiffiffi
n0

p
=N.

However, in general the estimation of the binary digits Zj

is not perfect. A rounding error occurs whenever jΦest
j−1 −

Φj−1j > π=2 (where Φest
j represents a suitable estimator

derived from the n0 measurement outcomes), leading to
the wrong Zj, and a variance contribution of ð2π2−jÞ2
for ΦLO. We can approximate their total variance contri-
bution with the sum ðΔΦLOÞ2re ¼ Pre

P
M−1
j¼1 ð2π2−jÞ2,

where Pre ¼ 2
R
∞
π=2 dϕρðϕÞ, and ρðϕÞ is the Gaussian

probability distribution of the error Φest
j − Φj with a width

proportional to 1=
ffiffiffi
n

p
0 (see the Supplemental Material

[30]). Consequently, rounding errors can be exponentially
suppressed by choosing a sufficiently large value for n0.
The total measurement uncertainty of this estimation
scheme is thus ðΔΦLOÞ2 ¼ ðΔΦLOÞ2pr þ ðΔΦLOÞ2re. In
[30], we show that the optimal allocation of resources is
achieved for the choice nopt0 ∼ ð16=π2Þ logðNÞ, for which
rounding errors are negligible, yielding the total measure-
ment accuracy,

ΔΦLO ≈ ðΔΦLOÞpr ¼
8

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNÞ

p
=N: (3)

This measurement precision obtains the Heisenberg limit
(up to a logarithmic correction resulting from the cost to
suppress rounding errors) despite it being applicable to a
general (typically large) phase.
So far we have assumed that ΦLO ∈ ½−π; πÞ in each

cycle. However, for realistic laser noise spectra there is
always a finite probability that the LO phase ΦLO lies
outside the interval ½−π; πÞ after the interrogation time.
Such phase wraps of the laser phase itself add to the final
measurement uncertainty in Eq. (3) by the amount
ðΔΦLOÞ2slip ¼ ð2πÞ2Pslip, where Pslip ¼ 2

R
∞
π dϕρLOðϕÞ,

and ρLO is the Gaussian prior distribution of ΦLO. Its width
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grows with γLOT, which puts a constraint on the maximally
allowed Ramsey time T ≤ π2

4
γ−1LO½logðγLOτNÞ�−1, and thus

the achievable ADEV σyð∝ 1=
ffiffiffiffi
T

p Þ as we demonstrate in
the Supplemental Material [30].
This, however, does not represent a fundamental

limitation as we can extend the scheme by adding addi-
tional classical measurements with a shorter Ramsey
periods to assess the number of phase slips of the laser
phase itself …Z−3Z−2Z−1Z0. As demonstrated in SI [30],
this allows extending the Ramsey time by a factor k
adding only a negligible number of atoms N�≈
ð8=π2Þ log ðkN2Þlog2ðkÞ ≪ N.
With all phase wraps counted correctly, the Ramsey time

is only limited by individual noise processes. The finite
linewidth of the atomic clock transition γind gives rise to the
fundamental constraint T ≤ γ−1ind=2

M−1. For averaging times
τ ≤ γ−1ind=2

M−1, we can choose T ≈ τ, and using the opti-
mized value for n0 found above the resulting clock stability
is obtained from Eq. (1),

σyðτÞð1Þ ≈
2

ω0τ

ffiffiffiffiffiffiffiffi
nopt0

q
N

≈
8

πω0τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNÞp
N

: (4)

It scales linearly with the averaging time τ, and realizes
the Heisenberg bound of laser stability up to a logarithmic
correction. In contrast, in the regime τ ≥ γ−1ind=2

M−1, T is
limited by the presence of individual particle noise to a
value T ≈ γ−1ind=2

M−1 ¼ 2γ−1indn0=N, and we find

σyðτÞð2Þ ≈
1

ω0

ffiffiffiffiffiffiffi
γind
τN

r
: (5)

Equation (5) represents the fundamental noise floor for
laser stability resulting from quantum metrological bounds
in the presence of individual particle noise [34]. As we
have seen, the proposed protocol reaches this optimal
value rapidly after the averaging time τ0 ∼ γ−1ind logðNÞ=N
(cf., Fig. 2), N= logðNÞ times faster than any classical
scheme. In the Supplemental Material [30] we derive the
necessary threshold fidelities in the GHZ state preparation
our scheme can tolerate without compromising the stability
in Eqs. (4) and (5).
In the following, we benchmark the stability of our

protocol against different approaches by comparing the
lowest achievable ADEV as a function of averaging time τ
(cf., Fig. 2). First, we consider the standard procedure in
which all atoms are interrogated in an uncorrelated fashion.
The scheme is identical to N independent measurements of
ΦLO, and therefore the ADEV is limited by the standard
quantum limit: σy ∼ ð1=ω0τ

ffiffiffiffi
N

p Þ for τ < γ−1LO. Since the
Ramsey time is limited, by the LO noise, to T < γ−1LO due to
uncorrected phase wraps, this fails to achieve the funda-
mental bound, Eq. (5), giving suboptimal ADEV,
σyðτÞ ∼ 1

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γLO=τN

p
, in the long time limit τ > γ−1LO.

Second, we discuss the recently published classical

protocol which interrogates the LOwith uncorrelated atoms
for exponentially increasing Ramsey times in each cycle
[20,21]. This protocol can be understood as the classical
part (j ≤ 0) of the cascaded interrogation proposed here.
It eliminates the constraint of the LO linewidth, and allows
to extend the interrogation time T to its maximum value,
enabling a linear scaling with τ up to the point where the
fundamental bound (5) is reached. However, using an
uncorrelated interrogation, the scheme displays a stan-
dard-quantum-limited scaling (i.e., ∝ 1=

ffiffiffiffi
N

p
), for short

averaging times.
The above analysis illustrates the quantum gain of the

proposed clock operation protocol using cascaded GHZ
states. As compared to the best known classical scheme,
our scheme provides a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N= logðNÞp

enhancement for short
averaging times. As a result it reaches the fundamental
noise floor for laser stability in the presence of single
particle decoherence [Eq. (5)] ∼N=logðNÞ times faster.
This result identifies the possible advantage of using
entanglement previously debated in the literature
[9–13,16,18,35]: while the long term limitation is set by
atomic decoherence, entangled atoms reach this limit faster
thus improving the bandwidth of the stable oscillator. Our
results motivate the development of quantum enhanced
atomic clocks based on entangled ions [36] and neutral
atoms. Furthermore, it lays the foundations for the recently
proposed network of quantum clocks [37] which achieves
the optimal use of resources in a global network through
network-wide entangled states.

FIG. 2 (color online). Allan deviation σy for different protocols
as a function of averaging time τ, normalized to the standard
quantum limit, for γLO=γind ¼ 103. The solid black line corre-
sponds to the standard scheme using a single uncorrelated
ensemble. It fails to reach the fundamental noise floor set by
the atomic transition linewidth (cf., Eq. (5), broken line). A more
sophisticated classical scheme which uses exponentially increas-
ing Ramsey times in each cycle [20,21] allows us to extend
the regime of linear scaling with 1=τ up to the point where the
bound (5) is met. In comparison, the proposed cascaded GHZ
protocol (blue solid curves) enables an ∼N times faster con-
vergence. For short averaging times the stability is enhanced by a
factor

ffiffiffiffi
N

p
as compared to classical protocols.
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