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We describe a technique that enables a strong coherent coupling between a single electronic spin qubit
associated with a nitrogen-vacancy impurity in diamond and the quantized motion of a magnetized nanome-
chanical resonator tip. This coupling is achieved via careful preparation of dressed spin states which are highly
sensitive to the motion of the resonator but insensitive to perturbations from the nuclear-spin bath. In combi-
nation with optical pumping techniques, the coherent exchange between spin and motional excitations enables
ground-state cooling and controlled generation of arbitrary quantum superpositions of resonator states. Optical
spin readout techniques provide a general measurement toolbox for the resonator with quantum limited
precision.
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I. INTRODUCTION

Techniques for cooling and quantum manipulation of mo-
tional states of nanomechanical resonators are now actively
explored. Work in this field is motivated by ideas from quan-
tum information science,1,2 testing quantum mechanics for
macroscopic objects,3,4 and potential applications in nano-
scale sensing.5,6 Approaches based on mechanical resonators
coupled to optical cavities,7 superconducting devices,8,9 or
cold atoms10 are presently being investigated in experiments.

This Rapid Communication describes a technique that en-
ables a coherent coupling between the quantized motion of a
mechanical resonator and an isolated spin qubit. Specifically,
we focus on the electronic spin associated with a nitrogen-
vacancy �NV� impurity in diamond11 which can be optically
polarized and detected and exhibits excellent coherence
properties even at room temperature.12 Since its precession
frequency depends on external magnetic fields via the Zee-
man effect, single spins can be used as magnetic sensors
operating at nanometer scales.13,14

The essential idea of the present work can be understood
by considering a prototype system shown in Fig. 1. Here a
single spin is used to sense the motion of the magnetized
resonator tip that is separated from the spin by an average
distance h and oscillates at frequency �r. These oscillations
produce a time-varying magnetic field that causes Zeeman
shifts of the spin qubit. Specifically, the shift corresponding
to a single quantum of motion is �=gs�BGma0, where gs
�2, �B is the Bohr magneton, Gm is the magnetic field gra-
dient, and a0=�� /2m�r is the amplitude of zero-point fluc-
tuations for a resonator of mass m. For realistic conditions
h�25 nm, �r /2��5 MHz, a0�5�10−13 m, and Gm
�107 T /m, we find that � /2� can approach 100 kHz. Such
a large shift can be easily measured within a fraction of a
millisecond by detecting the electronic spin state.14 More
importantly, the coupling constant � can considerably exceed
both the electronic spin coherence time �T2�1 ms� and the
intrinsic damping rate, 	=�r /Q, of high-Q mechanical reso-
nators. In this regime, the spin becomes strongly coupled to
mechanical motion in direct analogy to strong coupling of
cavity quantum electrodynamics.

Before proceeding we note that coupling of mechanical
motion to several types of matter qubits, ranging from Coo-
per pair boxes to trapped atoms, has been considered
previously.3,10,15 The distinguishing feature of the present ap-
proach is that working at nanoscale dimensions allows us to
combine a well-isolated spin qubit with a large interaction
strength, thus enabling the strong-coupling regime. In what
follows we describe how this regime can be accessed in the
presence of fast dephasing �T2

��1 �s� of the electronic spin
due to interactions with the nuclear-spin bath by using an
appropriate dressed spin basis. We then show how it can be
applied to cooling and quantum manipulation of mechanical
motion.

In the setup shown in Fig. 1 the nanomechanical resonator
is described by the Hamiltonian Hr=��ra

†a, with �r as the
frequency of the fundamental bending mode and a and a† as
the corresponding annihilation and creation operators. Mo-

tion of the magnetic tip produces a field �B� tip��Gmẑ, which is
proportional to the position operator ẑ=a0�a+a†� and results
in a Hamiltonian,

HS = HNV + ��ra
†a + ���a + a†�Sz. �1�

Here HNV describes the dynamics of the driven electronic
spin and Sz is the z component of the spin operator which we
here assume to be aligned with the NV symmetry axis.

The electronic ground state of the NV center is an S=1
spin triplet, and we label states by �ms	, where ms=0, 
1.
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FIG. 1. �Color online� The magnetic tip attached to the end of a
nanomechanical resonator of dimensions �l ,w , t� is positioned at a
distance h�25 nm above a single NV center, thereby creating a
strong coupling between the electronic spin of the defect center and
the motion of the resonator. Microwave and laser fields are used to
manipulate and measure the spin states.
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Spin states with different values of �ms� are separated by a
zero-field splitting of �0 /2��2.88 GHz, which originates
from nonaveraged spin-spin interactions.11 For moderate ap-

plied magnetic fields,16 ��BB� ����0, static and low-
frequency components of magnetic fields cause Zeeman
shifts of states �
1	 while microwave �mw� fields drive Rabi
oscillations between �0	 and the exited states �
1	 as shown
in Fig. 2�a�. In a frame rotating with the mw frequencies,

HNV = 

i=
1

− ��i�i	�i� +
�i

2
��0	�i� + �i	�0�� , �2�

where �
 and 
 denote the detunings and the Rabi fre-
quencies of the two mw transitions. For simplicity we restrict
the following discussion to symmetric conditions; i.e., �i
�� and i� �e.g., using a single mw field polarized in x
direction and Bz→0�. Hamiltonian �2� then couples the state
�0	 to a “bright” superposition of excited states �b	= ��−1	
+ �+1	� /�2, while the “dark” superposition �d	= ��−1	
− �+1	� /�2 remains decoupled. The resulting eigenbasis of
HNV is therefore given by �d	 and the two dressed states
�g	=cos����0	−sin����b	 and �e	=cos����b	+sin����0	, with
tan�2��=−�2 /�. Corresponding eigenfrequencies are
�d=−� and �e/g= �−�
��2+22� /2. We will mainly focus
on the regime ��0 where �g	 is the lowest-energy state
Fig. 2�b��.

To achieve a resonant coupling, values for  and ��� can
now be adjusted such that transition frequencies between
dressed states, e.g., �dg=�d−�g, become comparable with
the oscillator frequency �r. Rewriting Hamiltonian �1� in
terms of �g	, �d	, and �e	 we obtain

HS = ��ra
†a + ��eg�e	�e� + ��dg�d	�d� + ���g�g	�d� + �e�d	

��e� + H.c.��a + a†� , �3�

where �g=−� sin��� and �e=� cos���. Under resonance con-
ditions, �r��gd��ed Hamiltonian �3� reduces to the well-
known Jaynes-Cummings �JC� model and describes coherent
oscillations between states �n	�g	 and �n−1	�d	, where �n	 de-
notes a phonon number state. To observe the coherent dy-
namics associated with this model the vacuum Rabi fre-
quency �g must be compared to the motional decoherence
rate �r and random shifts of the transition frequency, ��dg,
due to hyperfine interactions with the nuclear-spin bath. The
condition �g��r, ��dg then defines the strong-coupling re-
gime. While in principle �r�	 at zero temperature, we iden-

tify below �r�kBT /�Q as the relevant decoherence rate for
experimentally accessible temperatures T. Interactions with
the nuclear-spin bath are characterized by a typical strength
�n�1 /T2

��1 MHz which exceeds �.
To show how the strong-coupling regime can be achieved,

we now study the driven NV center in the presence of hy-

perfine interactions, Hnuc=gs�BBn,z�t�Sz, where B� n�t� is the
effective magnetic field associated with the nuclear-spin

bath. B� n�t� is quasistatic on the timescales of interest16 but
has a random magnitude on the order of �Bn,z�=��n / �gs�B�.
In Fig. 2�c� we plot dressed state energies of HNV� =HNV
+Hnuc as a function of �n. For →0 we recover the linear
Zeeman shift for the bare spin states �
1	. In this regime
large random shifts of �dg would prevent resonant interac-
tions between the spin and the resonator mode. However, for
���� where the operator Sz has only off-diagonal matrix
elements in the dressed state basis, perturbations are sup-
pressed for � ��n�. In particular, the quadratic shift of the
transition frequency �dg is given by

��dg
�2� = �n

2/�gd1 − tan−2��� + sin2���� . �4�

We find that in the present three-level configuration not only
can we eliminate linear shifts of the transition frequency but
at a particular value of ���0�0.22� even quadratic correc-
tions vanish. At this “sweet spot” the remaining frequency
shift is ��gd

�4��0.6��n
4 /�gd

3 . In other words, operation at the
sweet spot allows us to suppress the effect of Hnuc by several
orders of magnitude and to treat remaining corrections as a
small perturbation.

II. EXAMPLE

As an example we consider a Si cantilever5 of dimensions
�l ,w , t�= �3,0.05,0.05� �m with a fundamental frequency of
�r /2��7 MHz and a0�5�10−13 m. A magnetic tip with
size of �100 nm and homogeneous magnetization M �2.3
�106 T /�0 �Ref. 6� produces a magnetic gradient of Gm
�7.8�106 T /m at a distance h�25 nm away from the tip
and results in a coupling strength � /2��115 kHz. For a
temperature of T=100 mK and Q values of 105 the heating
rate is �r /2��20 kHz. Operating close to the sweet spot
���0 and assuming �n�1 MHz we obtain ��g ,�r ,��gd�
=2�� �70,20,2� kHz. Hence, this combination enables us
to access the strong-coupling regime of Hamiltonian �3�. For
higher values of Q�106 and/or a reduction in the system
dimensions to h�10 nm the strong-coupling regime can
then be reached even at temperatures up to a few kelvins.

III. APPLICATIONS

Hamiltonian �3� allows a coherent transfer of quantum
states between the spin and the resonator modes, which in
combination with optical pumping and readout techniques
for spin states12 provides the basic ingredients for the gen-
eration and detection of various nonclassical states of the
mechanical resonator. Here we discuss in more detail an op-
tical cooling scheme for ground-state preparation and a gen-
eral strategy for the generation of arbitrary superpositions of
resonator states.

a) b) c)

FIG. 2. �Color online� �a� Level diagram of the driven NV cen-
ter in the electronic ground state. �b� Dressed spin basis states for
���� and ��0. �c� Energies of dressed states in the presence of
external perturbations of the form Hnuc=��nSz for  / ���=0.1
�dashed line� and  / ���=1 �solid line�.
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Cooling and state preparation techniques rely on a con-
trolled dissipation of energy which in the present setting can
be achieved by optical pumping of spin states as shown in
Fig. 3�a�. A laser excites spin states �
1	 into higher elec-
tronic levels from where they decay with a rate �1 back to
the same spin state or with a rate �0 to state �0	. Projected on
the electronic ground state we can characterize the pumping
process by a tunable pumping rate �op�t�=p

2�t��0 / ��1
+�0�2 between states �
1	 and �0	 and the branching ratio
�=�1 /�0. While off-resonant excitations at room tempera-
ture yield ��1, the ideal limit �→0 can be reached using
resonant excitations of appropriately chosen transitions at
lower temperatures.17 Including mechanical dissipation of
the resonator mode, the evolution of the system density op-
erator ��t� is described by the master equation

�̇�t� = i��t�,HS� + 	��Nth + 1�Da� + NthDa†���

+ �op�t� 

i=
1

�D�0	�i�� + �D�i	�i���� . �5�

Here Dĉ��ª �2ĉ�ĉ†− ĉ†ĉ�−�ĉ†ĉ� /2 and Nth= exp���r /
kBT�−1�−1 are the thermal equilibrium occupation number
for a support temperature T.

To remove thermal excitations we first study cw cooling
of the resonator mode. Assuming �op�t���op�� we elimi-
nate the fast dynamics of the spin degrees of freedom18 and
study the effective evolution of the mean occupation number
�n	�t�=Tr���t�a†a�. The resulting equation is of the form
�ṅ	=−W��n	− �n	0�, with a total cooling rate W=Wop+	 and
a final occupation number �n	0= �	Nth+Aop

+ � /W. Here the op-
tical cooling and heating rates, Wop=S��r�−S�−�r� and Aop

+

=S�−�r�, are determined by the fluctuation spectrum

S��� = 2�2 Re�
0

�

d��Sz���Sz	0ei��, �6�

which describes the ability of the spin to absorb ���0� or
emit ���0� a phonon of frequency �. To achieve ground-
state cooling Wop�O��2 /�op� must exceed Aop

+ and the ther-
mal heating rate �r=	Nth, where �r�kBT /�Q for relevant
temperatures kBT���r.

The spectrum S��� is plotted in Fig. 3 for the sideband
resolved regime ���op� , ��� ,�r where individual reso-
nances of width ��op can be assigned to transitions in the
level diagram shown in Fig. 3�b�. Under resonance condi-

tions, �r=�dg, cooling is dominated by transitions �n	�g	
→ �n−1	�d	 corresponding to the peak in the spectrum at �
��r. This cooling process is partially compensated for by
heating transitions which can occur for nonzero populations
�ee and �dd of excited states �e	 and �d	. While �ee�1 /2
under strong driving conditions, transitions �n	�e	→ �n
+1	�d	 are detuned from resonance by ��dg−�ed�= ��� and do
not significantly contribute to heating. The remaining reso-
nant heating process, �n	�d	→ �n+1	�g	, is proportional to the
occupation of the dark state, which is populated only by
optical dephasing processes. Independent of  we obtain
�dd�� such that in the limit of ideal optical pumping �
→0, the dark state �d	 remains unoccupied, thus enabling
ground-state cooling with a strongly driven spin.

We derive analytic expressions for S��� using the quan-
tum regression theorem. To ensure resonance conditions we
choose values for ��0 and  which fulfill ��2+2

=�r /cos2��� and study cooling as a function of the remain-
ing free parameter �� 0,� /4�. For ��dg=0 and �op��r
we then obtain Wop= ��2 /�op�W where

W =
8 cos4���sin2���

�1 + �� + sin2����1 + cos2�2�� + 3� sin2�2��/4�
.

�7�

This function is maximized for ��0.2�, and for �→0 we
obtain an optimized damping rate of Wop�0.8��2 /�op. In
the presence of hyperfine interactions cooling is suppressed
when the level shift ��dg exceeds �op. From a numerical
evaluation of Wop shown in Fig. 4�a� we find that close to
���0 not only do we optimize Wop but cooling is also most
insensitive to perturbations. For given Wop�	 the final oc-
cupation number is

�n	0 �
�

2
tan2��� +

1

Q

kBT

�Wop
. �8�

By choosing �op�� and ��0 we find that conditions for
ground-state cooling coincide with the strong-coupling re-
gime. Therefore, a single electronic spin can be used to op-

-1 1
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FIG. 3. �Color online� �a� Optical pumping of spin states. �b�
Level diagram of Hamiltonian HS Eq. �3��. Wavy lines indicate
optical pumping processes into and out of state �d	 for �=0 �solid
line� and ��0 �solid and dashed lines�. �c� Excitation spectrum
S��� Eq. �6�� for �dg=�r, �ed�0.53�r, and �op /�r=0.01 and �
=1.
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FIG. 4. �Color online� �a� Optical cooling rate Wop in the pres-
ence of a perturbation Hnuc=��NSz for �=0 and �op /�r=0.03. �b�
Preparation of a superposition state ��	 as discussed in the text
where F=Tr���	�����t�� and pi=Tr��i	�i���t��. The sequence con-
sists of six cooling cycles of duration Tc�� /4�g+2.5 /�op fol-
lowed by a state preparation stage with Tp�� / �4�g�+� / ��8�g�.
Gray bars indicate short � /2 rotations between states �g	 and �d	.
The parameters used for this plot are �r /�g=0.01, �g /�r=0.01 and
�op /�r=0.05.
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tically cool the resonator into the quantum regime starting
from initial temperatures T�0.1–1 K. For ��0 the appar-
ent intrinsic limit for the present cooling scheme, �n0	
�� /2, can be overcome by employing a pulsed pumping
strategy as discussed below.

Once prepared near its ground state, the resonator state
can be completely controlled via Hamiltonian �3�. The key
mechanism that enables such a control involves the unitary
evolution under resonant JC Hamiltonian �3� when �r=�dg.
Specifically, for a time t=� /2�g this evolution maps arbi-
trary spin states onto superpositions of motional states with
zero and one phonon. This procedure can be generalized for
the generation of arbitrary states of the form ��	
=
n=0

M cn�n	�g	 as proposed by Law and Eberly.19 The basic
idea is that we can construct a unitary transformation U such
that U��	= �0	. Specifically, ��	 can be coherently mapped to
a state ���	 with the maximal phonon number reduced by one
after a free evolution UJC���=exp�−iHS� /�� followed by a
unitary rotation Ux���=exp−i���d	�g�+���g	�d���, which
can be implemented by an additional external microwave
pulse. For appropriately chosen parameters � and � this com-
bination removes first all population from state �M	�g	 and
successively from state �M −1,d	. By iterating this procedure
one can step by step construct a unitary evolution U which
maps ��	 onto the ground state �0,g	. Then, by starting from
�0,g	 the inverse operation U−1 will generate the target state
��	=U−1�0,g	. For a given M the state ��	 can be generated
within a time tM �M /2�g and a fidelity F��1
−M��r /2�g�� p0, where p0 is the initial occupation of state
�0,g	.

As an example of this procedure, we consider the genera-
tion of the state ��	= ��0	− �2	��g	 /�2 starting from a pre-

cooled thermal state with �n	=0.5. To prepare the initial state
�0,g	 with high fidelity, independent of �, we use a pulsed
pumping scheme. First, with �t�=0 the spin is optically
pumped into the bare spin state �0	. In the second step �t� is
turned on adiabatically such that the spin is prepared in state
�g	 while �d	 and �e	 remain unoccupied. Finally, for a time
tint=� / �4�g� the system undergoes an oscillation between
states �n	�g	 and �n−1	�d	. The repetition of this pulse se-
quence successively removes motional excitations and pre-
pares the resonator in the state �0,g	 with a probability p0
�1− ���r /4�g�. Next, a sequence of two mw pulses and two
partial swaps is used to prepare the catlike state ��0	
− �2	� /�2. Figure 4 shows the results of a numerical integra-
tion of master equation �5� simulating six cooling cycles fol-
lowed by the state preparation sequence. This example dem-
onstrates that quantum “engineering” of motional states is
possible using the present technique. Finally, the mapping
procedure can be used for spin-mediated readout of the me-
chanical motional states.

In summary, we have shown that a single electronic spin
qubit in diamond can be strongly coupled to the motion of a
nanomechanical resonator. Such a strong coupling enables
ground-state cooling and quantum-by-quantum generation of
arbitrary states of the resonator mode. Potential applications
include the use of nonclassical motional states for improved
antiferromagetic-based force and magnetic sensing
techniques,5 as well as for tests of fundamental theories.4
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