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Quantum error correction (QEC) can overcome the errors 
experienced by qubits1 and is therefore an essential component 
of a future quantum computer. To implement QEC, a qubit is 
redundantly encoded in a higher-dimensional space using quantum 
states with carefully tailored symmetry properties. Projective 
measurements of these parity-type observables provide error 
syndrome information, with which errors can be corrected via 
simple operations2. The ‘break-even’ point of QEC—at which the 
lifetime of a qubit exceeds the lifetime of the constituents of the 
system—has so far remained out of reach3. Although previous works 
have demonstrated elements of QEC4–16, they primarily illustrate 
the signatures or scaling properties of QEC codes rather than 
test the capacity of the system to preserve a qubit over time. Here 
we demonstrate a QEC system that reaches the break-even point 
by suppressing the natural errors due to energy loss for a qubit 
logically encoded in superpositions of Schrödinger-cat states17 of a 
superconducting resonator18–21. We implement a full QEC protocol 
by using real-time feedback to encode, monitor naturally occurring 
errors, decode and correct. As measured by full process tomography, 
without any post-selection, the corrected qubit lifetime is 320 
microseconds, which is longer than the lifetime of any of the parts 
of the system: 20 times longer than the lifetime of the transmon, 
about 2.2 times longer than the lifetime of an uncorrected logical 
encoding and about 1.1 longer than the lifetime of the best physical 
qubit (the |0〉f and |1〉f Fock states of the resonator). Our results 
illustrate the benefit of using hardware-efficient qubit encodings 
rather than traditional QEC schemes. Furthermore, they advance 
the field of experimental error correction from confirming basic 
concepts to exploring the metrics that drive system performance 
and the challenges in realizing a fault-tolerant system.

Implementing QEC in the laboratory is challenging, requiring a 
complex system with many qubits. Even for a perfectly realized QEC 
system of finite size, there will always be unrecoverable errors or failure 
modes, resulting in an exponential decay of the information over time. 
In fact, error correction first introduces a hardware overhead penalty, 
because an uncorrected logical qubit consisting of n physical qubits  
(for typical first-order codes n ≈  5–10; ref. 22) will experience 
 decoherence that is of order n times faster. A central goal of QEC 
is to suppress the naturally occurring errors and surpass the break-
even point, at which the lifetime gain due to error correction is larger 
than this overhead penalty. These considerations motivate exploring 
a  hardware-efficient approach to QEC, with which it may be more 
tractable to not only overcome the entire overhead, but to pinpoint the 
leading limitations to fault-tolerance.

The encoding of logical states as superpositions of Schrödinger-cat 
states (hereafter, ‘cat code’) that we implement here is a hardware- 
efficient scheme that requires fewer physical resources and introduces 
fewer error  mechanisms than do traditional QEC proposals. Designed 

to operate within a continuous-variable framework23, the cat code 
exploits the fact that a coherent state | α〉  is an eigenstate of the resonator 
lowering operator â: ˆ α α α| 〉= | 〉a . Using a logical basis comprised of 
superpositions of cat states, which are eigenstates of photon-number 
parity, the cat code requires just a single ancilla to monitor the dominant 
error due to single photon loss induced by resonator energy damping. 
This error channel gives rise to two effects: deterministic energy decay 
of the resonator field to vacuum and the stochastic application of â, 
which results in a change of photon-number parity of any state within 
the cat code. The former becomes a limiting factor only at small reso-
nator field amplitudes when coherent state overlap can no longer be 
neglected and can be addressed through either dissipative pumping 
approaches24 or unitary gates. The latter, photon loss, is accompanied 
by phase shifts of π /2 about the Zc axis within the logical space, indi-
cating that by  monitoring photon parity as the error syndrome we 
adhere to the  prescriptions for error correction by translating single 
photon loss into a unitary operation on the encoded state18,19 (Fig. 1):
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±C i i 2i  (the normalization factor 2  holds 
in the limit of large α (refs 17 and 18)). By detecting photon jumps in  
real-time with quantum non-demolition parity measurements21, we 
learn how the phase relationship between the basis states changes, 
thereby protecting the encoded qubit from the dominant error channel 
of the system. The rate of photon jumps scales linearly with the average 
 photon number n (ref. 17), which exactly mirrors the aforementioned 
overhead faced by traditional QEC codes22,25. Thus, when 
 implementing the cat code, a central figure of merit when assessing the 
performance of the QEC system will be the degree to which we can 
overcome the encoding overhead with the application of fast, repeated 
parity measurements in time.

We use a 3D circuit quantum electrodynamics (QED)  architecture26 
consisting of a single transmon qubit coupled to two waveguide 
 resonators21,27. The transmon is used as an ancilla both to provide 
the error syndrome and to encode and decode the logical states 
(Supplementary Information, section 3). One resonator stores the 
logical states while the other is used for ancilla readout and control. 
The dominant storage–ancilla interaction terms are described by the 
following Hamiltonian:

ħˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †( )ω ω χ/ = + − −H a a a a e e K a a
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with | e〉 〈 e|  the ancilla excited state projector, ωs and ωa the storage 
 resonator (henceforth the resonator) and ancilla transition frequencies, 
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respectively, χsa/(2π ) ≈  1.95 MHz the dispersive frequency shift, K/(2π)  
≈  4.5 kHz the resonator anharmonicity, or Kerr, and ħ is the reduced 
Planck constant. The ancilla has coherence times T1 ≈  35 μ s and 
T2 ≈  13 μ s; the resonator has a single-photon Fock state relaxation time 
τc ≈  250 μ s and coherence time ≈ μT s3302

c . To perform high-fidelity 
single-shot measurements of the ancilla28, we set the readout resonator 
to have a 1-MHz bandwidth and use a nearly quantum-limited 
phase-preserving amplifier, the Josephson parametric converter 
(JPC)29, as the first stage of amplification, which allows for a readout 
fidelity of 99.3%. The error syndrome is measured using a Ramsey-style 
pulse sequence consisting of two π /2 pulses applied on the ancilla and 
separated in time by π /χsa ≈  250 ns (ref. 30). The subsequent ancilla 
projective readout takes about 700 ns, which includes integration times, 
cable latencies and feedback delays. A change in the ancilla state after 
the Ramsey mapping indicates a change in parity, or the loss of one 
photon (assuming negligible photon excitation) with 98.5% fidelity 
(Supplementary Information, section 1). The total duration of each 
error syndrome measurement is just 1 μ s, or approximately 0.8% of the 
average time between photon jumps for cat states with =n 2.

We use a new real-time controller designed to execute programs for 
quantum control (Supplementary Information, section 5). Every 
 repetition of the program (Fig. 2a–d) begins with the controller 
 encoding one of the six cardinal points on a Bloch sphere in the even 
logical basis states, enough to perform process tomography of the full 

QEC system2. The number of syndrome measurements and the waiting 
time tw between them is set to an optimal value to balance the risk of 
missing photon jumps and the possibility of measurement back-action 
on the resonator state due to ancilla T1 (Supplementary Information, 
section 4; more details below); for cat states of ≈n 3, tw ≈  13 μ s. The 
program uses a state machine for adaptive parity monitoring, in which 
the sign of the second π /2 pulse in the parity mapping is chosen in 
real-time to maximize the probability of measuring the ancilla in its 
ground state | g〉 ; this improves measurement reliability by decreasing 
the probability that the state of the ancilla will change during 
measurement.

The program stores in memory a record of ‘0’s (no error) and 
‘1’s (error) that specifies the monitoring history; Fig. 2b shows the 
four possibilities for two steps: {00, 01, 10, 11} with probabilities 
{70.4%, 13.7%, 11.8%, 4.1%}. The asymmetry in the occurrence of 01 
and 10 is due to parity measurement infidelity and is well-modelled by a 
Bayesian analysis (Supplementary Information, section 7). Conditioned 
on obtaining one of these four records, Wigner tomography provides 
a striking visual demonstration of the cat code in action. Interference 
fringes, signatures of quantum coherence17, continue to be sharp and 
extremal as the program proceeds in time, as compared with the case 
of performing no parity monitoring. At each point in the program the 
tomograms agree well in parity contrast, phase and amplitude as seen 
in simulations. These levels of predictability highlight the advantages of 
this hardware-efficient scheme: knowing the Hamiltonian parameters 
and the measurement fidelity of a single error syndrome is sufficient to 
encapsulate the evolution of an error-corrected logical qubit.

Two further applications of feedback are necessary to maximize the 
performance of the QEC system. Owing to the non-commutativity of 
the Kerr Hamiltonian ˆ ˆ†a aK

2
2 2 and â, a photon jump results in a phase 

shift of the resonator state in phase space proportional to K and the 
jump time tj: θK =  Ktj (ref. 18). The controller must therefore use the 
monitoring history, which provides a best-estimate of tj, to consolidate 
trajectories of equal error number, yet different error timestamp, into 
a single effective resonator state in real-time; for example, before 
 decoding, 01 and 10 become a single ‘1 error’ state. The controller also 
decides in real-time to apply a different set of decoding pulses on the 
basis of the final parity. Figure 2c shows qubit state tomography of  
the ancilla after decoding, but before correction, conditioned on the 
 number of errors. The rotation of the six cardinal points by π /2 for one 
error and π  for two errors indicates that the cat code successfully maps 
photon-loss errors in the resonator onto a unitary operation on the 
encoded qubit. Upon completion of execution of the program, the 
knowledge of how many errors occurred is equivalent to having 
 corrected the state. Although aligning the Bloch spheres of all error 
trajectories to the same orientation requires a simple phase adjustment 
on the ancilla drive in the decoding sequence, in this example we 
instead choose to show the performance of each error case individually. 
The program thus returns the corrected qubit, now stored again in the 
ancilla, completing the full QEC cycle.

We benchmark the performance of our QEC system by performing 
process tomography of the QEC system. We use the chi matrix 
 representation for a single qubit2, in which state tomography of the 
output density matrix ρfin is used to calculate the measured, complex 
4 ×  4 chi matrix XM. The fidelity F =  tr(XMX0) is defined as the overlap 
of XM with X0, the chi matrix for the identity operator Î , the ideal case 
in which a QEC system corrects a state perfectly. Shown in Fig. 2e are 
the process matrices for the QEC program demonstrated in Fig. 2a–d. 
The form of X j

M (XM for j =  0, 1 and 2 errors) matches the process 
matrix for ideal rotations about the Z axis (defined by the Pauli matrix 
σz) by jπ /2, Xjπ/2. Signatures of developing incoherent mixture are 
 evident from the non-zero values in all diagonal elements.

Moving to an initial encoding size of =n 20  to reduce the probability 
of photon jumps, we implement the cat code with up to six syndrome 
measurements over approximately 110 μ s (Fig. 3a). As in Fig. 2b, each 
repetition is separated by an optimized waiting time that depends on 
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Figure 1 | The cat-code cycle. In the logical encoding of 
α α≡ = ± −α

±C0  and α α≡ = ± −α
±C i i1 i  (normalizations 

omitted), the two ‘2-cats’ α
±C  and α

±Ci  are eigenstates of either even (+ )  
or odd (− ) photon-number parity (an ‘n-cat’ is a superposition of  
n coherent states). For large enough | α|  they are effectively orthogonal to 
one another. In this basis, the states along the logical axes + Xc and + Yc are 
both ‘4-cats’ of even or odd parity as well. The different patterns in the 
fringes of their cartoon Wigner functions signify the different phase 
relationship between the basis states. These features allow one to store a 
qubit in a superposition of 2-cats, ψ = +α α

± ±c C c Ci0 1 , and at the same 
time monitor the parity as the error syndrome without learning anything 
about c0 or c1, the arbitrary coefficients satisfying | c0| 2 +  | c1| 2 =  1. In this 
example, we choose to encode | 0〉  and | 1〉  in the even-parity basis, although 
the odd basis can equally be chosen. The loss of a single photon changes 
not just the parity of the basis states (red shading, even; blue shading, odd), 
but the phase relationship between them by a factor of i as well: 
ˆ( + )= +α α α α

+ + − −a c C c C c C ic Ci i0 1 0 1 . Therefore, after one photon jump, 
one finds the initial qubit rotated by π /2 about the logical Zc axis. With 
each subsequent application of â, the encoded state cycles between the 
even- and odd-parity subspaces, while, owing to each consequent 
multiplication of the coefficient c1 by i, the encoded information rotates 
about the Zc axis by π /2, as indicated by the rotation of the green shaded 
slice. Between the stochastic applications of â, the cat states 
deterministically decay towards vacuum: α →  αe−κt/2 (not depicted here), 
indicating that the logical basis changes in time.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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the average photon number in the resonator, starting at tw ≈  15 μ s and 
increasing after each subsequent step up to tw ≈  25 μ s to account for the 
decay of the average photon number. Without post-selection, the cat 
code outperforms the uncorrected transmon with a time constant of 
exponential decay that is a factor of about 20 higher, indicating that 
although the coupling between the resonator and transmon is always 

on, the efficient extraction of error syndromes using an ancilla with 
inferior coherence properties still allows for substantial gains in 
 lifetime. Moreover, the cat code surpasses the decay of the uncorrected 
cat code by a factor of about 2.2, demonstrating that applying error 
correction to the logical encoding makes up for the faster error rates 
introduced by the hardware overhead. The palpable difference in 
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Figure 2 | Example of a two-step quantum trajectory executed by the 
QEC state machine. a, Six cardinal points on the Bloch sphere ρinit are 
encoded (‘E’) from the ancilla onto even-parity resonator states; green 
markers indicate the initial coordinate-system orientation. A ‘Wigner 
[tomography] snapshot’ is shown for ( − )→ ( − )α α
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; 
=n 30 ; β is the amplitude of varying coherent displacements ( ˆ β=βD 0 f ) 

and the average parity ˆ ˆ ˆ†
〈 〉= 〈 〉β βP D PD , where ˆ †= πP ei a a. b, A state machine 

for adaptive parity monitoring with delays tw ≈  13 μ s between each 
measurement. ‘Parity measurement’ rectangles show the Ramsey sequence 
that maps even [+ /− ] (odd [+ /+ ]) parity onto ancilla | g〉  (| e〉 ); the +  or −  
specifies the sign of the π /2 pulse. Diamonds indicate branching on ancilla 
measurement (0 →  no error, | g〉 ; 1 →  error, | e〉 ); ‘π  pulse on ancilla’ 
rectangle indicates ancilla reset (| e〉  →  | g〉 ); clocks indicate recording of 
the error time tj. Dashed purple arrows emphasize the phase difference 
between 10 and 01 due to θK. Rotations θM are due to cross-Kerr 
interactions between the readout and storage resonators during ancilla 

measurements. The parity (Wigner tomogram origin) matches the best 
estimate (border colour); tomograms match the expected resonator state as 
seen in simulations. c, The feedback aligns all states by changing the phase 
of subsequent resonator drives (for example, for Wigner tomography or 
decoding pulses) to account for θK and θM. Ancilla tomography after 
decoding shows the expected rotations of π /2 per error about Z (green 
markers). Different decoding pulses (‘D’) are chosen in real-time 
depending on the parity of the final state. d, The correction to obtain the 
final state ρfin is made via coordinate system rotations ( ˆRz, where ẑ  is the 
qubit axis defined by Pauli matrix σz) by 0 (for 0 errors), − π /2 (for 1 error) 
or − π  (for 2 errors) in software. e, Process tomography results for j =  0, 1 
and 2 errors before correction. Ideal Xjπ/2 process matrices are shown in 
wire-outlined bars. Experimental data for X j

M are shown in solid bars; the 
values are complex numbers with the amplitude on the vertical axis and an 
argument specified by the bar colour. Amplitudes of less than 0.01 are not 
depicted. Process tomography after correction is shown to the right of the 
arrow. I, the identity matrix; F, fidelity.
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 contrast between the cardinal points of the uncorrected versus the 
 corrected cat codes after approximately 110 μ s (Fig. 3b) demonstrates 
that with a full QEC system we can enhance the lifetime of a qubit 
without giving preference to any one direction on the Bloch sphere. By 
decaying with a time constant that exceeds that of the Fock state by a 
factor of 1.1, this system reaches the break-even point of QEC.

The history of errors also provides us with a valuable measure 
of confidence that the result of an error syndrome measurement 
 faithfully reflects the actual error history. Indeed, a ‘low-confidence’ 
 measurement record that suggests two or more consecutive errors (for 
example, 11 as in Fig. 2c) has a much lower probability of faithfully 
reflecting the true error trajectory of the resonator state than does a 
‘high-confidence’ record, wherein a 1 is ‘confirmed’ by a subsequent 0  
(Supplementary Information, section 7). If we accept only high- 
confidence trajectories, still keeping 80% of the data after 100 μ s, then 
we obtain a decay constant of over half a millisecond. The marked 
improvement we observe when excluding ‘low-confidence’  trajectories 
points to parity measurement infidelity, primarily due to ancilla 
 decoherence, as the dominant limitation on cat-code performance.

An overall analysis of the budget for the lifetime gain for our QEC 
system is shown in Table 1, which lists the dominant avenues of code 
failure common to any QEC system and encapsulates the challenges 
one faces in realizing fault-tolerant QEC. Contributions from the first 
five entries in Table 1 can be suppressed by measuring more quickly 
and using a quantum filter to estimate the parity at any given time21, as 
seen in the column where tw ≈  0 μ s. However, errors due to the ancilla 
T1 persist regardless of measurement rate. Owing to its dispersive 
 coupling to the resonator, a change in the energy of the ancilla at an 
unknown time imparts an unknown rotation to the resonator state in 
phase space; this is the forward propagation of an error. Measuring the 
syndrome more frequently only increases the likelihood of ancilla- 
induced dephasing, necessitating the aforementioned optimized 
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Figure 3 | QEC process tomography. a, To implement QEC, we 
redundantly encode the qubit in cat states ( =n 20 ) and pay the required 
overhead penalty, which is ubiquitous to QEC. This leads initially to worse 
performance; the process fidelity (F(t)) of the uncorrected cat code 
(orange circles), where cat states are left to decay freely between encoding 
and decoding, exhibits faster decay as compared to the Fock states | 0〉 f and 
| 1〉 f (grey circles). Substantial improvements in performance are realized 
with the full QEC system; the corrected cat code (red triangles) surpasses 
the uncorrected transmon (green squares) by a factor of about 20, makes 
up for the QEC overhead by a factor of about 2.2, and offers an 
improvement over the Fock-state encoding by a factor of about 1.1. With 
only high-confidence trajectories (blue diamonds), the decay time τ 
increases to τ >  0.5 ms. The top axis indicates the number of syndrome 
measurements used for each point in the corrected cat code. Cat code data: 

100,000 averages per point; transmon, Fock states: 50,000 averages per 
point; error bars are smaller than marker sizes. Although no data exhibits 
strictly single-exponential decay, all curves are well modelled by 
F(t) =  0.25 +  Ae−t/τ (dotted lines), with τ the decay time of the specific 
qubit storage scheme and A a fitting constant that is ideally equal to 0.75. 
F =  0.25 (grey dashed line) implies a complete loss of information. 
Uncertainties are given by the errors (on τ) in the fit. Fluctuations in the 
uncorrected cat code are explained by the Kerr effect and are reproduced 
in simulation. b, State tomography after approximately 110 μ s 
(corresponding to black arrows in a). Transmon and Fock-state Bloch 
spheres show amplitude damping. Bloch sphere shrinking for the cat code 
is well-characterized by a depolarization channel. The system substantially 
benefits from QEC, as seen from the greater definition of each cardinal 
point in the corrected versus uncorrected case.

Table 1 | Failure modes of the corrected logical qubit
Failure mode Dominant source Maximum rate, 

tw ≈ 0 μs
Optimal rate,  
tw ≈  20 μs

Predicted τ

Double errors Cavity ˆ ˆ⋅a a 40 ms 1.7 ms

Uncorrectable errors Cavity ˆ†a 6 ms 6 ms

Readout error Transmon Tφ 7 ms 2 ms

Ancilla preparation Transmon Γ↑ 300 ms 900 μ s

Undesired couplings Cavity ˆ ˆ†a a2 2 600 ms 3 ms

Forward propagation Transmon T1 200 μ s 600 μ s

Net lifetime Predicted 200 μ s 320 μ s

Measured - 318 μ s

Gain over uncorrected logical qubit 1.4 2.2

Gain over best physical qubit 0.7 1.1

This table shows the predicted decay time constant (τ) of quantum information stored in a 
corrected logical qubit using the cat-code paradigm under a scenario in which each individual 
failure mode is the only source of loss. Dominant modes of failure in the cat code are:  
double errors (â followed by â) between consecutive syndrome measurements separated  
by a time tw; possible errors that the cat code does not address, such as additions of a single 
photon ( ˆ†a ); a failed parity mapping resulting from ancilla dephasing (Tφ); incorrect ancilla 
initialization before syndrome measurement resulting from unknown excitations (Γ↑) of the 

ancilla during tw; undesired couplings that result in dephasing due to Kerr ( ˆ ˆ†a a2 2); and ancilla 
decoherence that directly propagates to unrecoverable errors in the resonator state, which  
is a result of ancilla decay or excitation (T1). Two different measurement strategies are shown  
for an initial =n 20 : as quickly as possible (tw ≈  0 μ s) and the optimal monitoring time (tw ≈  20 μ s). 
The lowest two rows show the multiplicative gains of cat-code performance over the decay 
constants of the uncorrected logical qubit (147 μ s) and the best physical qubit of the system 
(287 μ s, Fock states | 0〉 f,| 1〉 f). These gains reflect the combined effects of all loss channels acting 
together. We predict all numbers using an analytical model derived in Supplementary 
Information, section 6, and show that for the net gains the failure modes do not contribute 
independently. Using the optimal measurement strategy, we find that the predicted gains in 
lifetime over the uncorrected logical qubit and over the Fock state encoding match the  
measured performance of the corrected cat code (318 μ s) shown in Fig. 3. Lifetimes of at least 
6 ms would be possible if the forward propagation of errors from the syndrome measurements 
were abated.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



0 0  M O N T H  2 0 1 6  |  V O L  0 0 0  |  N A T U R E  |  5

LETTER RESEARCH

 measurement cadence that sets the delay between syndrome measure-
ments from tw ≈  0 μ s to, on average, tw ≈  20 μ s for =n 20 . We therefore 
see that when designing a QEC system, sources of decoherence beyond 
double-errors per round of correction can motivate substantially slower 
measurement rates. However, because the cat code performs at the 
break-even point even in the presence of all of these sources of loss, we 
are optimistic about the prospect of realizing a fault-tolerant QEC 
 system. Indeed, supplementing the cat code with a scheme that abates 
ancilla back-action promises to allow increased error syndrome 
 measurement rates (a lower tw) and thus greater gains in lifetime.

Our results show that QEC can actually protect an unknown bit 
of quantum information, and extend its lifetime by active means. 
Furthermore, we demonstrate the crucial role of real-time feedback 
with pulses that depend on the evolution of the quantum system, an 
addition to the experimental setup that greatly improves error correc-
tion performance and allows us to realize the cat code at the break-even 
point of QEC. Future goals include combining the cat code with mech-
anisms to re-inflate cat state amplitudes24 and to equip the parity mon-
itoring protocol to handle changes in ancilla energy, thereby addressing 
issues of non-fault-tolerance. With such capabilities we can then move 
beyond using the cat code as a quantum memory only and begin cou-
pling multiple resonators together to demonstrate operations between 
error-corrected logical qubits19. Our results motivate the adoption of 
hardware-efficient QEC schemes and demonstrate the promise of cat 
states as a basis for future quantum computing applications.
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