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Abstract

We investigate the measurement-only topological quantum computation (MOTQC) approach
proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown
to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced
measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via
repeatedly measuring charges in different bases. This is a probabilistic process with a certain success
probability for each trial. In practice, the number of measurements needed will vary from run to run.
We show that such an uncertainty associated with forced measurements can be removed by simulating
the braiding operation using a fixed number of three measurements supplemented by a correction
operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator
in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and
only require the capability of performing charge measurements to implement topologically protected
transformations generated by braiding exchanges without physically moving anyons.

1. Introduction

Anyons are excitations of topological phases and exhibit exotic exchange statistics [1, 2], different from either
fermions or bosons. In particular, non-Abelian anyons which obey noncommutative exchange statistics can be
used to encode and process quantum information in the associated topological degenerate subspace for
topological quantum computation (TQC). Such a subspace is characterized by topology, and is robust against
local perturbations. This intrinsic error-protection holds great promise for fault-tolerant TQC and has triggered
alot of interest in searching for non-Abelian anyons.

Examples of non-Abelian anyons with realistic proposals of physical setups include Majorana [3-5] and
parafermion zero modes [6]. Several experiments have found convincing evidence of the existence of Majorana
zero modes in systems of semiconductor nanowires in proximity to a superconductor [7—11] and magnetic ad-
atomic chains placed on the surface of a superconductor [12]. Recently, the characteristic exponential energy
splitting of Majorana zero modes has been observed in proximity-induced superconducting Coulomb islands
[13]. Such an exponential protection implies that quantum information can be encoded in the degenerate
topological states in a non-local manner. Rotations on the logical space can be performed through braiding
exchanges of Majorana modes, which only depend on the topology of the braiding path and are robust against
local noise [1]. However, the set of operations is limited to Clifford gates and is not complete for universal
quantum computation.

Zy parafermion zero modes [6, 14] are generalizations of Majorana fermions (MFs) which correspond to
the case N = 2. There have been several proposals to realize parafermions using quantum Hall states [15-20]
and coupled wires [21-23] all of which involve strong electron—electron interactions in some form. In addition
to the proposals in condensed matter settings, twist defects [24] introduced in the Zy toric code model have a
quantum dimension of v/N and behave as parafermions for general N [25-27]. Compared to MFs, parafermions
provide a denser set of qudit rotations. Recently, a 2D lattice model of Zs parafermions is shown to support

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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more exotic Fibonacci anyons [28] which enable the universal set of gates. Therefore, parafermions are
computationally more powerful and could potentially lead to the solution for universal TQC [29].

The exciting progress of experiments and theoretical ideas around MFs and parafermions motivates us to go
beyond how to search for those exotic anyons and look into how to manipulate them for the purpose of (1)
demonstrating non-Abelian exchange statistics as a short-term mission and (2) implementing quantum
algorithms with topological quantum gates as a long-term goal. Traditional approach of TQC involves encoding
in the topological protected subspace, initialization and readout of the logical qubits via measurements of
topological charges, and braiding operations to implement the quantum gates by slowly moving anyons around
each other. Braiding has to be slow enough compared to the time scale set by the energy gap to avoid exciting
quasiparticles, and fast enough compared to the time scale set by the residual energy splitting between
topological degenerate states [30]. This makes braiding a challenging task.

Alternatively, braiding can be done using either interaction-based proposals [31, 32] or a measurement-only
approach [33-35] without physically moving anyons. These two approaches are shown to be equivalent [36] and
they can avoid diabatic errors associated with moving anyons. In particular, measurement-only approach will
allow us to concentrate on improving measurement fidelity alone because that is the only type of operation
required for MOTQC in order to initialize, braid and readout topological qubits. However, the MOTQC
proposal uses a series of topological charge forced measurements to simulate braiding. Each forced
measurement is a probabilistic ‘repeat-until-success’ process, and hence has an inherent uncertainty with
respect to the number of operations. This poses a challenge to synchronize the clock for computations running
in parallel.

In this paper, we propose a forced-measurement-free measuremment-based braiding (FMF-MBB)
protocol. Each braiding exchange can be simulated by performing three measurements supplemented by a
correction operator. Using the examples of MFs and parafermions, we show that the correction operator
compensates for charge transfers among anyons occurred during the three measurements. Furthermore, we
demonstrate that we can apply the correction operator in software which greatly simplifies the protocol. We
show explicitly how to apply the FMF-MBB protocol to the demonstration of braiding statistics and MOTQC.

2. MBB without forced measurements

2.1. Diagrammatic representation
Following [33, 36—40], we employ a diagrammatic representation of anyonic states and operators to describe a
general anyon model. This representation encapsulates the topological properties of anyons independent of
specific physical model. In general, an anyon model is defined by (1) a set C of topological charges a, b, ¢, ...€C
carried by anyons, (2) fusion rules specifying how topological charges are splitted or combined, and (3) braiding
rules specifying what happens to the anyonic state once two anyons exchange positions. There is a unique
vacuum charge I which has trivial fusion and braiding rules. For each charge a, there exists a unique conjugate
charge a which can be generated from vacuum I together with a. The associative fusion algebra defines the fusion
rules as

axb=>Y Ngc (1)

ceC

where the fusion multiplicity Ny, specifies the number of possible ways for charges a and b to fuse into charge c.
The associated fusion and splitting Hilbert spaces V;, and V7 have the same dimension of N, The states in
fusion and splitting spaces can be represented by trivalent vertices

c
(de/dud) /*{w — (a by, pleVe,, )

(dc/dadb)l/4 a\yt/b = |a, b; c, ,LL> S Vcab, (3)
Cc
where d, is the quantum dimension of charge a and p = 1, 2,..., Ny, is the vertex label of basis. Most anyon

models of physical interest and which are the ones we will consider have no fusion multiplicity, i.e., N3, = 0 or
1, and therefore we will leave the vertex label p implicit hereafter. The state space involving more than one fusion
or splitting obeys associativity determined by F-moves

a b & a C
‘eﬁ/ i, \%’“ | @)
d 7 d
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Figure 1. FMF-MBB protocol to exchange anyons a; and a4. () Initialization of ancilla anyons a, and a5 into collective charge by;. (b)—
(d) Projective measurements of a; and a, into charge by, a, and a4 into b,4, and a, and a into b,3. The blue dash lines indicates charge
transfers during the measurements. (e) The correction operator C is applied to undo all the charge transfers.
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where [Fcfih]ef = / e d’ [F Jﬁeh] . The counter-clockwise braiding operator can be represented diagrammatically

b a
\/’ de b (6)
Ry = =3 [ RS ¢
TN Z dady
a b

where R’ is the phase acquired after exchanging charges a and b which fuse together into charge c.

In this paper, we consider projective measurements of topological charges and physical examples include
interferometry measurements [ 1, 39, 41-43], topological blockade readout of topological charge [44], magnetic
flux controlled parity readout using a top-transmon system [30], and electric charge sensing using a quantum
point contact or a quantum dot [45]. In the diagrammatic representation, the projector of two anyons with
charges a, and g, projected onto collective charge b, is given by

H(lz) dblz biz (7)

2.2. FMF-MBB protocol

The key insight of the MOTQC protocol is to teleport anyonic state via projective measurements [33]. As shown
in figure 1(a), one can first initialize the ancilla anyons a, and g into the collective charge b,3. Then, one can
perform a projective measurement of the collective charge b,, of a; and a, (figure 1(b)). Itis apparent that
anyonic state encoded in a; is teleported to a; if by, = by3. In the case that b, = by3, one can go back to the
initialization step and then measure b,3 and then b;, again. Such a process can be repeated until the desired
outcome by, = b,3isobtained. Thisis the so-called forced measurement [33].

In general, without imposing forced measurements, at each step in figures 1(b)—(d) there will be charge
transfers between anyons [30, 36] in addition to the anyonic state teleportation. This is the essence of our FMF-
MBB protocol: we accept and keep track of the measurement results we obtain in figures 1(b)—(d), and
supplement the final state with a correction operation to undo the charge transfers as shown in figure 1(e). The
resulting state is the same as the initial state in figure 1(a) except that a; and a, are exchanged. Using equation (7),
we can write down the product of three-projective-measurement (TPM) operator ]\;I14,23 describing the
projectors in figures 1(b)—(d) and H(bif)
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where A/ is the normalization factor. Note that ng )is not part of the TPM operator.

To further proceed with the calculation, it is essential to restrict ourselves to the case that the intermediate
collective charges by, by, bay and b, are Abelian; otherwise the resulting operation will not be unitary and hence
can not simulate braiding exchange [36]. This includes the Ising and Zy parafermion models but not the
Fibonacci anyon model. Using the identities defined by F-moves in equations (4) and (5) and the Abelian-ness of
by, and b4, we can move A’ and D’ to merge with D and A respectively, and there is only an additional phase
factor

’ 23) ©)
Mg 3117 = N,
where ¢ = by, X bysand as = a, x a, X as. Using equation (5), we can rewrite equation (9) as
s I = A , (10)

where h = b3 X bys. Equation (10) provides a clear physical picture: compared to the forced measurement
protocol, there are also charge transfers during the measurements in figures 1(b)—(d). These charge transfers are
encoded in two processes in equation (10), namely exchange of Abelian charge gbetween a, and a4, and exchange
of charge h between (a, as) and (a, a4).

After further manipulations utilizing the identities in equations (4)—(6), ]\;114,23 is brought into a form close to
the desired braiding-exchanged result

- 23
Miy3 H(bz3)

= Ni D IF Ina [FE% ]y R
cd

(11)

34 14 23
= N DSTE D LFESS D R T,
C

Equation (11) is applicable to models of either anyons or defects [40] which exhibit interesting projective non-
Abelian statistics as long as the collective charges by, b1, o4 and b3 are Abelian.

4
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2.3. Effective braiding for parafermions

To dis-entangle the effective braiding from the charge transfers, we apply the result to the Zy parafermion
model [6, 14] which is physically relevant (N = 2 is the MF case). For Zy parafermions, there are N fusion states
|q) of two parafermions o, where g = 0,...,N — Lis the Abelian charge (defined modulo N). The F-matrix of
parafermions is given by [ 19, 40, 46]

[F" )00 = W™, w=ev, (12)
where a and b are Abelian charges. Plugging equation (12) into equation (11), we have

Miap3TT5) = i@y whd=sRAATIGVTIMO I, (13)
cd

where ¢ is an overall phase. In addition, the braiding and parity operators of parafermion modes +; and 7;acton
the fusion states in the following ways
Rila)j = RV1q)s» Pyl = wilq)y,

A N+1 o«

P = w2y (14)

Using equation (14), we can express equation (13) in operator form

M3 Hfj) = e (Bs)MIGY (Pra) 8 Ry, I Hﬁfs)- (15)
cd

. A gh
Now, we supplement a correction operator Cli,23
AGh 23 ipp, TT(23
C14,23 [M14,23H§,z3)] = el¢R14H(bz3),
~ &h A A
C14,23 = (P14)%(P34) h, (16)

It becomes apparent that the ancilla parafermions 2 and 3 return to their initialized collective charge state b,; and
an effective braiding exchange is achieved between parafermions 1 and 4 (figure 1(e))

Agh o~ A
C14,231V114,23 = el¢R14- (17)

Equation (17) is the central result of our paper and the key insight here is to undo the charge transfers occurred
during the measurements to realize the desired braiding operation. Taking N = 2, equation (16) is consistent
with our previous results of MFs [27] obtained using a wave-function approach.

3. How to apply the correction operator C?

3.1. Hardware-implemented correction operator

In principle, it is possible to apply the correction operator C in a topologically protected way on the hardware.
For the special case of MFs, one possible approach is to use the Aharonov—Casher (AC) effect [47, 48]. The parity
operator 13,-j is the Pauli &, operator in the logical space of MFs ~; and ;. Applying Isl-j imprints a m-phase
difference between the logical state |0);; and | 1);;. This can be achieved using the setup for the interferometry
experiments proposed by Clarke and Shtengel [49], and Grosfeld and Stern [50]. The Majorana modes are
hosted by the inner superconducting island using the Majorana wire approach [4, 5]. A Josephson vortex
(fluxon) can be generated on demand in the circular Josephson junction and driven to circulate the loop by an
applied supercurrent [48, 51-53]. Looping the fluxon around the inner superconducting island once will lead to
aphase mQ/2e due to the AC effect [47, 48, 54], where Q is the charge on the island. Therefore, an exact 7-phase
difference will be produced between |0);; and |1);; states, which is equivalent to applying the parity operator.

3.2. Software-implemented correction operator

For quantum computation with Zy parafermions, we show that the correction operator can be applied in
software to completely avoid potential errors introduced by the hardware approach, similar to how Pauli
operations can be implemented in surface codes [55]. In particular, we consider the implementation of
correction operators in software in three cases. Since braiding is the building block of TQC, we first show the
case of how to implement correction operator in software for a set of two braidings. Next, we study the case of
implementing correction operator in software for a braiding operation followed by a charge measurement.
Those two cases form the building blocks for the third case of applying in software correction operatorsin a
generic computation comprising Clifford gates and charge measurements.

5
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3.2.1. Case A: two braidings

Suppose we want to implement a braiding operation R; ;

ii, to exchange computational parafermions 7; and i,

using ancilla parafermions i, and i3, which is followed by the braiding exchange R j,i, of computational
parafermions j; and j, using ancilla j, and j;. We consider general braidings, and hence computational
parafermion i, or i, can be the same as j; or j,. The same holds for ancilla parafermions i,, i3, j, and j;. However,
ancilla parafermions are solely used for assisting braiding and are different from computational parafermions.
According to equation (17), these two braidings can be simulated by FMF-MBB protocol

— 1% N eEt N
R]1)4R1114 - [Cj]j4,j2j3M]1]4,]2]3] [Ci1i4,i2i3Mlll4,lzl3]J (18)

where
g = bk X bk, hk = bigk, X bioky k = i, j, (19)

keep track of intermediate charge transfers. Hereafter, we neglect the trivial overall phase factor. The TPM
operator for parafermions is given by

Mkl kokoks = H(kz ks) H(kqu) H(kl kz) (20)

bryis biaks ~riky’

where the projective charge measurement of parafermions can be expressed in terms of the parity operator

N
P9 = S~ (wtmB,,)’. 1)
=1

Pq

Parafermions obey the commutation relation

Yoy = WEUPyy,, (22)

1

where sgn(q — p) shows the importance of the relative ordering of % and % whenw™ = w.

Without loss of generality, we assume j; 4 < 14 in therelative ordering of parafermion modes. [14]. In

this case, we can commute Cl ,’ i

through M; ; ; ; using equation (22)

A A &>hj 2 8ohi A~/ o
RjjRii, = C20 0 Gt i M 1 i i i (23)
where
"‘/. ) (]z]a) (Gpdy) (]112
TiipdaJs H Hb Hb (24)
)2)3 Jads iz
!
bij =bjj, + 16ji — 6jilg + [6ji, + 6j,i]hi, (25)
!/
bJ Js = 1214 [61414 6j4il]gi - [6j4i4 + §j2i3]hi’ (26)
~/
bjzja ]213 [61313 - 6]2’3]}1’ (27)
Here, g; = b;;, X Eim and h; = b,z,3 b;,;, are the charge transfers between parafermions i,—i, expressed in
terms of the charge readouts. To simplify the above expression, we introduce the short-hand notations
_ 5 A Sk _
Ri = Rikps Ck = Cikyboks Mk = Migky kokss (28)
!
b; Jih bflfz
!
bj = b]2]4 > b/ b]214 . (29)
b; b .
JaJs b]z]s

The intermediate charge measurement results are implicitly in the short-hand notations, and we can express
equations (24)—(27) as

RjR; = (C;M))(CiM)) = C;CiM[M;, (30)
H(]z]3)H(]z]4) H(l]]z (31)
by szJ4 hmz
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where
(5]1 i 6]1 i‘l)gi + (5,71 iy + 6]2 i3) hi
Aj(g;, hy) =00, — 6j,1)8 — (0,0, + 65, hi (33)
(0j,iy — 0j,i)hi
is the difference between the charge measurement results before and after commuting C; through M;. Tt is
dependent on the intermediate measurement results encoded in g;and h; from the first TMP operator, and that

whether the two set of parafermions are the same or not. Therefore, the effect of postponing the correction
operator is to have updated intermediate measurement results in the second TPM operator.

3.2.2. Case B: a braiding followed by a charge measurement

Next, we consider the case of a braiding operation R; followed by a charge measurement II;. R; realizes the
braiding exchange between computational parafermions i, and i, assisted by the ancilla parafermions i, and 5.
According to equation (17), R; can be simulated by a TPM operator M; followed by a correction operator C;,
where M; = M,
of computational parafermions j; and j,, which can be the same as 7; or 74 but not i, and i;. The operator for this

= Gsh = TG - y
Jiniiy and C; = €77 - . The charge measurement I1; = chllj4 measures the collective charge ¢; ;

case can be written as

gphi ~
iyig, i3 M1114>izi3‘ (34

R — T (O M) — TG A
ILR; = I1;(C;My) = T ¢

Again, weassume j; , < ij_4in the relative ordering of parafermion modes After commuting the correction
operator through the charge measurement operator using equation (22), we have

ILR; = I;(C;:M;) = G} M, 35)
where
I, = 1%, 56
Jiia
CJ{1j4 = Cj|j4 + nj(gi’ hi)> (37)
nj(gi) hl) - (6j1i1 o 6j4i1)gi + (6j4i4 - 6j1i4)(gi - hi)) (38)

encodes the change of the final measurement result due to commuting the correction operator through.

3.2.3. Case C: general computation

Now, for a general computation comprised of Cliffold gates, we can break it down to a series of braiding
operations R;, i = 1,...,m, followed by a set of final projective measurements IT = (II;, IL, ...,1I,) on the
logical qubits to extract information as shown in figure 2(a) (we defer the discussion of non-Cliffold gates to next
section). Here, each braiding operation involves two computational parafermions and two ancilla parafermions,
and each charge measurement involves two compuational parafermions. For simplicity, we keep the indices of
the parafermions implicit in the definition of R;and IT.

According to equation (17), each braiding operation R; can be simulated by a combination ofa TPM
operator M, and a correction operator C;as shown in figure 2(b). According to the discussion in section 3.2.1, we
can commute C,,_; through M,,,, which then becomes M. In general, for M; we need to commute C,, ..., C;_;
through and M; becomes M with a set of updated charge measurements

i—1
bi = bi + > Ai(g, hw), (39)
k=1
where b; is the set of charge measurements of M;and A;(g,, hy) is defined in equation (32), encoding the change
due to commuting Cy through® M;. Figure 2(c) illustrates the impact of commuting all the correction operators
through the TPM operators.

In the final step of software-implemented correction operator, we commute all the correction operators
through the final set of logic measurements IT following section 3.2.2. According to equations (35)—(38), charge
measurement IT; in IT will become H; with updated charge measurement result

C]/‘ = ¢ + an (gk) hk)a (40)
k=1

? The detailed form of A;(g;, h) can be different from equation (32) where a particular ordering of parafermions is assumed.
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Figure 2. Schematic of software-implememented correction operator for a generic computation using Cliffold gates. (a) A series of m
braiding operations Ry, ..., R,, followed by n projective measurements IT = (IIj, ..., II,). Here each line represents a compuational
parafermion and each braiding or measurement acts on two parafermions. (b) Each braiding operation can be replaced by a TPM
operator M followed by a correction operator C (see equation (17)). (¢) Commuting the correcition operators C,, ..., C,, through the
TPM operators M, ..., M,,. The TPM operators are updated to M’. (d) Commuting the correction operators through the final
measurements. The measurements are updated to 0.

where 77;(g;, hy) is defined in equation (38), encoding the change due to commuting Cy through” [];. Once
commuted through the final measurements, the correction operators have no impact on the computation any
more. The final result of software-implemented correction operators is shown in figure 2(d).

Therefore, the general procedure for carrying out a computation in figure 2(a) is to follow the steps in
figure 2(d) and record the charge measurement results (b}, ..., b)) of the TPM operators as well as the final
measurements (¢ ,..., ¢,). In order to extract the actual logic measurement results (c;, ..., ¢,,), we can do
postprocessing in two steps. First, using equation (39) we can perform a backtracking to find (by, ..., by,). For
instance, by is the same as b{, which can be used to compute A, (g, k). Then, b, can be calculated using b; and
Ay(g, k). For general i, we use all the previously calculated by, ;_; to compute A;(g,, i) (k = 1,...,i — 1),
which is further used to find b;. This way, we can calculate (by, ..., by,) using (by, ..., b,). The second step of
postprocessing is to compute 1; (8> hy) using (by, ..., by,). Then equation (40) will give us the desired actual
measurements (¢, . .., ¢,). We summarize the postprocessing backtracking algorithm below. It runs in linear
time of the number of braiding operations and hence can be carried out efficiently. This is the essence of the
software-assisted FMF MBB.

Algorithm 1. Postprocessing backtracking algorithm.
Input: (b],... b}, ): intermediate charge measurements
(c/,...,c}): measured charges in the final

measurement of IT' in figure 2(d)

Output: (g, ..., c,): original measured charges in figure 2(a)
I:b=b; — (g» ki) (equation (19))

2:fori = 2tomdo

30 g ki — Ai(g;_ys ki—1) (equation (33))

4: bl Ai(g, k), .. Aj(g_ > ki—1) — bj (equation (39))
5: by — g, kj(equation (19))

6: (g Mgy i) — 'r]j(gi, h;) (equation (38))

7: forj = 1tondo

8: cj’, nj(gl, hl),...,nj (&, hm) — ¢ (equation (40))

4 Again, the detailed form of 7;(g;, hi) can be different from equation (38) where a particular ordering of parafermions is assumed.
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Figure 3. Demonstration of braiding exchange statistics of Majorana fermions. (a) The usual way of demonstrating the non-Abelian
statistics of Majorana fermions in three steps. (b) FMF protocol for a single braiding exchange: the initialization and measurement
steps are the same as (a), but the physical exchange of MFs is replaced by a set of three charge measurements. (c) FMF protocol for two
braiding exchanges. The final charge readout b/ is different from b, 5 because the correction operator is applied in software. See
equations (46) and (56) in the main text for the connection between b, s and b/s.

4. Demonstration of non-Abelian statistics with FMF-MBB protocol

Now, we show how to apply our software-assisted FMF-MBB protocol to the task of demonstrating non-Abelian
statistics of MFs. We do this by considering the two simplest examples of braiding experiments involving a single
braiding exchange and two braiding exchanges.

4.1. Single-braiding experiment

Figure 3(a) shows the usual way of using a single braiding exchange to demonstrate non-Abelian statistics of MFs
in three steps. First, Majorana pairs of (1, 5) and (4, 6) are initialized in the even parity states. Then MFs 1 and

4 are moved physically to exchange their positions [45]. Finally, the fermion charge b, 5 of the pair (1, 5) is
measured. Ideally, the parity of b5 has 50% probability to be even or odd, which is a direct evidence of the non-
Abelian statistics of MFs.

Figure 3(b) shows the approach of FMF-MBB using ancilla MFs a, and as;. We replace the physical exchange
of MFs 1 and 4 by the software-assisted FMF-MBB which is followed by a final charge measurement of the pair
(1, 5). The parity of b/5 can be different from that of b, 5. The operator describing the usual braiding in figure 3(a)
is given by

B =TI Ry, (41)

Using equation (17), we can replace the braiding operator by the set of three measurements shown in figure 3(b)
followed by the correction operator (ignoring the trivial phase factor)

b= Hﬁ,‘lf) é{i’,gsMM,zy (42)

where
g = b1y ® by, (43)
h = by; @ bys. (44)

After commuting the correction operator through the final charge measurement, we have

C14 23H ]\/114 23> (45)

where
bllS = b15 + g (46)
Therefore, for the single braiding experiment, one just needs to follow the steps depicted in figure 3(b) and the

actual charge b, 5 is connected to the measured charged b, via equation (46).

4.2. Double-braiding experiment
The case of two braidings can be approached in a similar way as shown in figure 3(c). The operator describing the
action of two braiding exchanges followed by a charge readout is given by
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= I{ORR. (47)
Using equation (17), we have (again, neglecting the overall phase factor)

gphs 3 () Zowoha yrr(@)
H(ls) [C14j23j1\/114 2] [C14 23 MfB] > (43)

where Z\;Il(z;3 and ]\?11(33 are the first and second TPM operators respectively and

8oy = b @ b3y, (49)
a,3 «,
hay = b @ 57, (50)

Finally, we can commute the two correction operators through the final charge measurement operator
(equation (23) and equation (45))

gphs ~(B) (@)
C14jzsj 1423 H(IS)MM 23Mi435 (51)
where
~ (8)'
¥ = T e I, 62
23 24 12
by = b + 8. (53)
~(8) 3
by, = bz(é) + By (55)
bls = bis + & t+ & (56)

In the two braiding experiment using our proposed FMF-MBB protocol, we have access to the charge readouts
b from the first set of three measurements, b’ from the second set, and the final charge readout b{s. We can
first backtrack and calculate b? using equations (53)—(55), which yields 8 and hg according to equations (49)
and (50). Then a further backtracking using equation (56) gives us the actual parity of b; 5 after two braiding
exchanges. Here, the key is that the correction operator is a Pauli operator acting on the logical qubit made of
two Majorana modes. The TPM operator comprises three single-qubit projective measurements, which remain
projective measurements with updated measurement results after commuting Pauli operators through.

Ideally, given an initially even parity state of (1, 5), b;s hasa 100% probability of flipping to the odd parity
after two braidings as a direct consequence of the non-Abelian statistics of MFs. Here, the only experimental
capability required is to perform quantum non-demolition (QND) readouts of the charge of Majorana pairs
[45, 54]. Such a simplification will allow us not to worry about the diabatic errors associated with moving MFs
and instead to concentrate on improving readout techniques. In fact, because the measurements are QND, a
natural way to boost the measurement fidelity is to simply repeat the same charge readout several times. In
addition, FMF-MBB protocol removes the uncertainty associated with the number of measurements in the
original MBB approach, and hence is more efficient experimentally. Therefore, we believe our FMF-MBB
approach can be an appealing avenue to the demonstration of non-Abelian braiding statistics.

5. MOTQC with FMF-MBB protocol

Finally, we outline how to adapt our FMF protocol to the more ambitious long-term goal of MOTQC using MFs
and parafermions. For Clifford gates, it is straightforward to apply the software-assisted FMF-MBB protocol
because braiding itself is enough to carry out Clifford operations.

However, to complete the set of gates for universal quantum computation using MFs, one also needs to add
the 7 /8-phase gate (I’ gate) which cannot be realized in a topologically protected way. Fortunately, there exist
protocols such as ‘magic state distillation’ to generate a high fidelity T gate. First, the distillation protocol starts
with 15 approximate copies of the ancilla state [a) = (]0) + ¢™/*|1))/~/2. For MFs, this can be done by
initializing the state in |0) and performing a single-qubit 7 /4 rotation. One way to generate the single-qubit
rotation is to bringing two Majorana modes together for a fixed amount of time such that the tunneling splitting
imposes an approximate 7/4 phase difference between |0) and |1). Another possibility is to use hybrid systems
that couple the MFs with other physical devices (e.g., tunnel junctions, flux qubits) to produce the desired
ancillary states [49, 54, 56—58]. In the second step, these states are then projected onto the subspace of the Reed-
Muller code [59, 60]. By subsequent stabilizer measurements, the states are encoded into a single logical qubit
and itis a purified version of |a). Finally, a T gate can be applied to the data qubit after performing several
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Clifford operations and projective measurements on a small circuit made of the purified |a) state and the data
qubit’.

Notice that the first step to generate ancilla states is independent of how we carry out the braiding operations
(no matter it is done via physical movements or our FMF-MBB protocol). However, the second and third steps
do heavily depend on the details of braiding since all the Clifford operations break down to sequences of braiding
exchanges. Fortunately, there are only two types of operations in the distillation protocol, namely Clifford operations
and single-qubit projective measurements. Adopting the FMF-MBB protocol developed above, we can replace
each braiding operator by the product of the TPM operator M and the correction operator C (equation (17)).
All the correction operators can then be commuted through the final measurements (equation (51)). The single-
qubit projective measurements remain Pauli measurements with updated measurement results dependent on
the correction operators. Therefore, the same software-assisted FMF-MBB procedure outlined for the single-
braiding and two-braiding experiments applies equally well to the magic state distillation protocol and hence to
MOTQC using MFs.

For Zy parafermions, magic state distillation is well-studied for the case of prime N [61], and it was recently
shown that all Clifford operations can be realized via braiding for odd N[62]. Hence, all the above discussion
carries over to the scenario of TQC using odd prime N parafermions.

6. Conclusion

We have proposed a protocol of MBB without forced measurements. In particular, the braiding exchange is
shown to be equivalent to a set of three measurements followed by a correction operation because we can always
introduce correction operations to compensate the (topological) charge transfer during the MBB. Furthermore,
for quantum computation with MFs or parafermions, we also show that the correction operator can be applied
in software similar in spirit to how the Pauli operations can be implemented in surface codes. Like the original
MBB protocol, our FMF-MBB protocol removes the need for moving anyons physically and reduces the
experimental requirement of braiding to the capability of performing projective measurements only. Compared
to the MBB protocol, it also removes the ambiguity in the number of measurements needed to realize a single
braiding operation. Finally, we show explicitly that such a simple braiding protocol can be applied to both the
demonstration of non-Abelian braiding statistics and measurement-based TQC using MFs and parafermions.
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