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Abstract
We investigate themeasurement-only topological quantum computation (MOTQC) approach
proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501)where the braiding operation is shown
to be equivalent to a series of topological charge ‘forcedmeasurements’ of anyons. In a forced
measurement, the chargemeasurement is forced to yield the desired outcome (e.g. charge 0) via
repeatedlymeasuring charges in different bases. This is a probabilistic process with a certain success
probability for each trial. In practice, the number ofmeasurements neededwill vary from run to run.
We show that such an uncertainty associatedwith forcedmeasurements can be removed by simulating
the braiding operation using a fixed number of threemeasurements supplemented by a correction
operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator
in hardware by implementing it in software. Ourfindings greatly simplify theMOTQCproposal and
only require the capability of performing chargemeasurements to implement topologically protected
transformations generated by braiding exchanges without physicallymoving anyons.

1. Introduction

Anyons are excitations of topological phases and exhibit exotic exchange statistics [1, 2], different from either
fermions or bosons. In particular, non-Abelian anyonswhich obey noncommutative exchange statistics can be
used to encode and process quantum information in the associated topological degenerate subspace for
topological quantum computation (TQC). Such a subspace is characterized by topology, and is robust against
local perturbations. This intrinsic error-protection holds great promise for fault-tolerant TQCand has triggered
a lot of interest in searching for non-Abelian anyons.

Examples of non-Abelian anyonswith realistic proposals of physical setups includeMajorana [3–5] and
parafermion zeromodes [6]. Several experiments have found convincing evidence of the existence ofMajorana
zeromodes in systems of semiconductor nanowires in proximity to a superconductor [7–11] andmagnetic ad-
atomic chains placed on the surface of a superconductor [12]. Recently, the characteristic exponential energy
splitting ofMajorana zeromodes has been observed in proximity-induced superconducting Coulomb islands
[13]. Such an exponential protection implies that quantum information can be encoded in the degenerate
topological states in a non-localmanner. Rotations on the logical space can be performed through braiding
exchanges ofMajoranamodes, which only depend on the topology of the braiding path and are robust against
local noise [1]. However, the set of operations is limited toClifford gates and is not complete for universal
quantum computation.

N parafermion zeromodes [6, 14] are generalizations ofMajorana fermions (MFs)which correspond to
the caseN=2. There have been several proposals to realize parafermions using quantumHall states [15–20]
and coupledwires [21–23] all of which involve strong electron–electron interactions in some form. In addition
to the proposals in condensedmatter settings, twist defects [24] introduced in the N toric codemodel have a
quantumdimension of N and behave as parafermions for generalN [25–27]. Compared toMFs, parafermions
provide a denser set of qudit rotations. Recently, a 2D latticemodel of 3 parafermions is shown to support
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more exotic Fibonacci anyons [28]which enable the universal set of gates. Therefore, parafermions are
computationallymore powerful and could potentially lead to the solution for universal TQC [29].

The exciting progress of experiments and theoretical ideas aroundMFs and parafermionsmotivates us to go
beyond how to search for those exotic anyons and look into how tomanipulate them for the purpose of (1)
demonstrating non-Abelian exchange statistics as a short-termmission and (2) implementing quantum
algorithmswith topological quantum gates as a long-term goal. Traditional approach of TQC involves encoding
in the topological protected subspace, initialization and readout of the logical qubits viameasurements of
topological charges, and braiding operations to implement the quantumgates by slowlymoving anyons around
each other. Braiding has to be slow enough compared to the time scale set by the energy gap to avoid exciting
quasiparticles, and fast enough compared to the time scale set by the residual energy splitting between
topological degenerate states [30]. Thismakes braiding a challenging task.

Alternatively, braiding can be done using either interaction-based proposals [31, 32] or ameasurement-only
approach [33–35]without physicallymoving anyons. These two approaches are shown to be equivalent [36] and
they can avoid diabatic errors associatedwithmoving anyons. In particular,measurement-only approachwill
allowus to concentrate on improvingmeasurement fidelity alone because that is the only type of operation
required forMOTQC in order to initialize, braid and readout topological qubits. However, theMOTQC
proposal uses a series of topological charge forcedmeasurements to simulate braiding. Each forced
measurement is a probabilistic ‘repeat-until-success’ process, and hence has an inherent uncertainty with
respect to the number of operations. This poses a challenge to synchronize the clock for computations running
in parallel.

In this paper, we propose a forced-measurement-freemeasuremment-based braiding (FMF-MBB)
protocol. Each braiding exchange can be simulated by performing threemeasurements supplemented by a
correction operator. Using the examples ofMFs and parafermions, we show that the correction operator
compensates for charge transfers among anyons occurred during the threemeasurements. Furthermore, we
demonstrate that we can apply the correction operator in software which greatly simplifies the protocol.We
show explicitly how to apply the FMF-MBBprotocol to the demonstration of braiding statistics andMOTQC.

2.MBBwithout forcedmeasurements

2.1.Diagrammatic representation
Following [33, 36–40], we employ a diagrammatic representation of anyonic states and operators to describe a
general anyonmodel. This representation encapsulates the topological properties of anyons independent of
specific physicalmodel. In general, an anyonmodel is defined by (1) a set  of topological charges ¼Îa b c, , ,
carried by anyons, (2) fusion rules specifying how topological charges are splitted or combined, and (3) braiding
rules specifyingwhat happens to the anyonic state once two anyons exchange positions. There is a unique
vacuumcharge Iwhich has trivial fusion and braiding rules. For each charge a, there exists a unique conjugate
charge ā which can be generated from vacuum I together with a. The associative fusion algebra defines the fusion
rules as


å´ =
Î

( )a b N c, 1
c

ab
c

where the fusionmultiplicityNc
ab specifies the number of possible ways for charges a and b to fuse into charge c.

The associated fusion and splittingHilbert spacesVc
ab andV

ab
c have the same dimension ofNc

ab. The states in
fusion and splitting spaces can be represented by trivalent vertices

ð2Þ

ð3Þ

where da is the quantumdimension of charge a and m = ¼ N1, 2, , ab
c is the vertex label of basis.Most anyon

models of physical interest andwhich are the ones wewill consider have no fusionmultiplicity, i.e., =N 0ab
c or

1, and therefore wewill leave the vertex labelμ implicit hereafter. The state space involvingmore than one fusion
or splitting obeys associativity determined by F-moves

ð4Þ

2
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ð5Þ

where *=[ ] [ ]F Fcd
ab

ef
d d

d d f
ceb

ad
e f

a d
. The counter-clockwise braiding operator can be represented diagrammatically

ð6Þ

whereRab
c is the phase acquired after exchanging charges a and bwhich fuse together into charge c.

In this paper, we consider projectivemeasurements of topological charges and physical examples include
interferometrymeasurements [1, 39, 41–43], topological blockade readout of topological charge [44], magnetic
flux controlled parity readout using a top-transmon system [30], and electric charge sensing using a quantum
point contact or a quantumdot [45]. In the diagrammatic representation, the projector of two anyonswith
charges a1 and a2 projected onto collective charge b12 is given by

ð7Þ

2.2. FMF-MBBprotocol
The key insight of theMOTQCprotocol is to teleport anyonic state via projectivemeasurements [33]. As shown
infigure 1(a), one can first initialize the ancilla anyons a2 and a3 into the collective charge b23. Then, one can
perform a projectivemeasurement of the collective charge b12 of a1 and a2 (figure 1(b)). It is apparent that
anyonic state encoded in a1 is teleported to a3 if =b b12 23. In the case that ¹b b12 23, one can go back to the
initialization step and thenmeasure b23 and then b12 again. Such a process can be repeated until the desired
outcome =b b12 23 is obtained. This is the so-called forcedmeasurement [33].

In general, without imposing forcedmeasurements, at each step infigures 1(b)–(d) therewill be charge
transfers between anyons [30, 36] in addition to the anyonic state teleportation. This is the essence of our FMF-
MBBprotocol:we accept and keep track of themeasurement results we obtain infigures 1(b)–(d), and
supplement the final state with a correction operation to undo the charge transfers as shown infigure 1(e). The
resulting state is the same as the initial state infigure 1(a) except that a1 and a4 are exchanged. Using equation (7),
we canwrite down the product of three-projective-measurement (TPM) operator M̂14,23 describing the

projectors infigures 1(b)–(d) andP( )
b
23
23

Figure 1. FMF-MBBprotocol to exchange anyons a1 and a4. (a) Initialization of ancilla anyons a2 and a3 into collective charge b23. (b)–
(d)Projectivemeasurements of a1 and a2 into charge b12, a2 and a4 into b24, and a2 and a3 into b̃23. The blue dash lines indicates charge
transfers during themeasurements. (e)The correction operator Ĉ is applied to undo all the charge transfers.

3
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ð8Þ

where 1 is the normalization factor. Note that P( )
b
23
23

is not part of the TPMoperator.
To further proceedwith the calculation, it is essential to restrict ourselves to the case that the intermediate

collective charges b23, b12, b24 and b̃23 are Abelian; otherwise the resulting operationwill not be unitary and hence
can not simulate braiding exchange [36]. This includes the Ising and N parafermionmodels but not the
Fibonacci anyonmodel. Using the identities defined by F-moves in equations (4) and (5) and the Abelian-ness of
b12 and b24, we canmove ¢A and ¢D tomergewithD andA respectively, and there is only an additional phase
factor

ð9Þ

where = ´ ¯g b b12 24 and = ´ ´a a a a5 4 2 3. Using equation (5), we can rewrite equation (9) as

ð10Þ

where = ´˜ ¯h b b23 23. Equation (10) provides a clear physical picture: compared to the forcedmeasurement
protocol, there are also charge transfers during themeasurements infigures 1(b)–(d). These charge transfers are
encoded in twoprocesses in equation (10), namely exchange of Abelian charge gbetween a1 and a4, and exchange
of charge h between (a2, a3) and (a1, a4).

After furthermanipulations utilizing the identities in equations (4)–(6), M̂14,23 is brought into a form close to
the desired braiding-exchanged result

ð11Þ

Equation (11) is applicable tomodels of either anyons or defects [40]which exhibit interesting projective non-
Abelian statistics as long as the collective charges b23, b12, b24 and b̃23 are Abelian.

4
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2.3. Effective braiding for parafermions
Todis-entangle the effective braiding from the charge transfers, we apply the result to the N parafermion
model [6, 14]which is physically relevant (N=2 is theMF case). For N parafermions, there areN fusion states
ñ∣q of two parafermionsσ, where = ¼ -q N0, , 1 is the Abelian charge (definedmoduloN). The F-matrix of

parafermions is given by [19, 40, 46]

w w= =s s
ss

- p[ ] ( )F , e , 12b
a ab N

i2

where a and b are Abelian charges. Plugging equation (12) into equation (11), we have

åwP = P P Pf s s-ˆ ( )( ) ( ) ( ) ( )M Re , 13b
cd

hd gc
c d c b14,23

23 i 34 14 23
23

4 1

23

wheref is an overall phase. In addition, the braiding and parity operators of parafermionmodes gi and gj act on
the fusion states in the followingways

w

w g g

ñ = ñ ñ = ñ

=

s s

+

ˆ ∣ ∣ ˆ ∣ ∣
ˆ ( )†

R q R q P q q

P

, ,

. 14

ij ij q ij ij ij
q

ij

ij i j

i j

N 1
2

Using equation (14), we can express equation (13) in operator form

åP = P P Pf -ˆ ( ˆ ) ( ˆ ) ˆ ( )( ) ( ) ( ) ( )M P P Re . 15b
i

cd

h
d

g
c b14,23

23
34

34
14 14

14 23
23 23

Now,we supplement a correction operator Ĉ
g h

14,23
,

P = P

=

f

-

ˆ [ ˆ ] ˆ

ˆ ( ˆ ) ( ˆ ) ( )

( ) ( )C M R

C P P

e ,

. 16

g h
b b

g h g h

14,23
,

14,23
23 i

14
23

14,23
,

14 34

23 23

It becomes apparent that the ancilla parafermions 2 and 3 return to their initialized collective charge state b23 and
an effective braiding exchange is achieved between parafermions 1 and 4 (figure 1(e))

= fˆ ˆ ˆ ( )C M Re . 17
g h

14,23
,

14,23
i

14

Equation (17) is the central result of our paper and the key insight here is to undo the charge transfers occurred
during themeasurements to realize the desired braiding operation. TakingN=2, equation (16) is consistent
with our previous results ofMFs [27] obtained using awave-function approach.

3.How to apply the correction operator Ĉ?

3.1.Hardware-implemented correction operator
In principle, it is possible to apply the correction operator Ĉ in a topologically protectedway on the hardware.
For the special case ofMFs, one possible approach is to use the Aharonov–Casher (AC) effect [47, 48]. The parity
operator P̂ij is the Pauli ŝz operator in the logical space ofMFs gi and gj. Applying P̂ij imprints aπ-phase

difference between the logical state ñ∣0 ij and ñ∣1 ij . This can be achieved using the setup for the interferometry
experiments proposed byClarke and Shtengel [49], andGrosfeld and Stern [50]. TheMajoranamodes are
hosted by the inner superconducting island using theMajoranawire approach [4, 5]. A Josephson vortex
(fluxon) can be generated on demand in the circular Josephson junction and driven to circulate the loop by an
applied supercurrent [48, 51–53]. Looping the fluxon around the inner superconducting island oncewill lead to
a phase pQ e2 due to the AC effect [47, 48, 54], whereQ is the charge on the island. Therefore, an exactπ-phase
difference will be produced between ñ∣0 ij and ñ∣1 ij states, which is equivalent to applying the parity operator.

3.2. Software-implemented correction operator
For quantum computationwith N parafermions, we show that the correction operator can be applied in
software to completely avoid potential errors introduced by the hardware approach, similar to howPauli
operations can be implemented in surface codes [55]. In particular, we consider the implementation of
correction operators in software in three cases. Since braiding is the building block of TQC,wefirst show the
case of how to implement correction operator in software for a set of two braidings. Next, we study the case of
implementing correction operator in software for a braiding operation followed by a chargemeasurement.
Those two cases form the building blocks for the third case of applying in software correction operators in a
generic computation comprising Clifford gates and chargemeasurements.

5

New J. Phys. 18 (2016) 123027 HZheng et al



3.2.1. Case A: two braidings
Supposewewant to implement a braiding operation R̂i i1 4

to exchange computational parafermions i1 and i4
using ancilla parafermions i2 and i3, which is followed by the braiding exchange R̂ j j1 4

of computational
parafermions j1 and j4 using ancilla j2 and j3.We consider general braidings, and hence computational
parafermion i1 or i4 can be the same as j1 or j4. The same holds for ancilla parafermions i2, i3, j2 and j3. However,
ancilla parafermions are solely used for assisting braiding and are different from computational parafermions.
According to equation (17), these two braidings can be simulated by FMF-MBBprotocol

=ˆ ˆ [ ˆ ˆ ][ ˆ ˆ ] ( )R R C M C M , 18j j i i j j j j
g h

j j j j i i i i
g h

i i i i,
,

, ,
,

,
j j i i

1 4 1 4 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3

where

= ´ = ´ =¯ ˜ ¯ ( )g b b h b b k i j, , , , 19k k k k k k k k k k1 2 2 4 2 3 2 3

keep track of intermediate charge transfers. Hereafter, we neglect the trivial overall phase factor. The TPM
operator for parafermions is given by

= P P Pˆ ( )˜
( ) ( ) ( )M , 20k k k k b
k k

b
k k

b
k k

,
k k k k k k1 4 2 3

2 3

2 3

2 4

2 4

1 2

1 2

where the projective chargemeasurement of parafermions can be expressed in terms of the parity operator

å wP =
=

-( ˆ ) ( )
ℓ

ℓ( ) P . 21b
pq

N
b

pq
1

pq

pq

Parafermions obey the commutation relation

g g w g g= - ( )( ) , 22p q
q p

q p
sgn

where -( )q psgn shows the importance of the relative ordering of gq and gp when w w¹-1 .

Without loss of generality, we assume - -j i1 4 1 4 in the relative ordering of parafermionmodes. [14]. In

this case, we can commute Ĉi i i i
g h

,
,i i

1 4 2 3
through M̂j j j j,1 4 2 3

using equation (22)

= ¢ˆ ˆ ˆ ˆ ˆ ˆ ( )R R C C M M , 23j j i i j j j j
g h

i i i i
g h

j j j j i i i i,
,

,
,

, ,
j j i i

1 4 1 4 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3

where

¢ = P P P¢ ¢ ¢
ˆ ( )

˜
( ) ( ) ( )M , 24j j j j
b

j j

b

j j

b

j j
,

j j j j j j1 4 2 3
2 3

2 3

2 4

2 4

1 2

1 2

d d d d¢ = + - + +[ ] [ ] ( )b b g h , 25j j j j j i j i i j i j i i
1 2 1 2 1 1 1 4 1 4 2 3

d d d d¢ = + - - +[ ] [ ] ( )b b g h , 26j j j j j i j i i j i j i i
2 4 2 4 4 4 4 1 4 4 2 3

d d¢ = + -˜ ˜ [ ] ( )b b h . 27j j j j j i j i i
2 3 2 3 3 3 2 3

Here, = ´ ¯g b bi i i i i1 2 2 4
and = ´˜ ¯h b bi i i i i2 3 2 3

are the charge transfers between parafermions i1–i4 expressed in
terms of the charge readouts. To simplify the above expression, we introduce the short-hand notations

º º ºˆ ˆ ˆ ( )R R C C M M, , , 28k k k k k k k k
g h

k k k k k,
,

,
k k

1 4 1 4 2 3 1 4 2 3

= ¢ =

¢

¢

¢

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥˜ ˜
( )

b

b

b

b

b

b

b b, . 29

j j

j j

j j

j j

j j

j j

j j

1 2

2 4

2 3

1 2

2 4

2 3

The intermediate chargemeasurement results are implicitly in the short-hand notations, andwe can express
equations (24)–(27) as

= = ¢( )( ) ( )R R C M C M C C M M , 30j i j j i i j i j i

¢ = P P P¢ ¢ ¢ ( )
˜
( ) ( ) ( )M , 31j
b

j j

b

j j

b

j j

j j j j j j
2 3

2 3

2 4

2 4

1 2

1 2

D¢ = + ( ( ))b b g h, , 32j j j i i
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where

d d d d

d d d d

d d
D =

- + +

- - +

-

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
( )

( ) ( )
( ) ( )

( )
( )

g h

g h

h

g h, 33

j i j i i j i j i i

j i j i i j i j i i

j i j i i

j i i

1 1 1 4 1 4 2 3

4 4 4 1 4 4 2 3

3 3 2 3

is the difference between the chargemeasurement results before and after commutingCi throughMj. It is
dependent on the intermediatemeasurement results encoded in gi and hi from thefirst TMPoperator, and that
whether the two set of parafermions are the same or not. Therefore, the effect of postponing the correction
operator is to have updated intermediatemeasurement results in the secondTPMoperator.

3.2.2. Case B: a braiding followed by a chargemeasurement
Next, we consider the case of a braiding operationRi followed by a chargemeasurement Pj.Ri realizes the
braiding exchange between computational parafermions i1 and i4 assisted by the ancilla parafermions i2 and i3.
According to equation (17),Ri can be simulated by a TPMoperatorMi followed by a correction operatorCi,

where º ˆM Mi i i i i,1 4 2 3
and º ˆC Ci i i i i

g h
,

,i i

1 4 2 3
. The chargemeasurement P º P( )

j c
j j
j j1 4

1 4 measures the collective charge c j j1 4

of computational parafermions j1 and j4, which can be the same as i1 or i4 but not i2 and i3. The operator for this
case can bewritten as

P = P = P( ) ˆ ˆ ( )( )R C M C M . 34j i j i i c
j j

i i i i
g h

i i i i,
,

,j j

i i

1 4

1 4
1 4 2 3 1 4 2 3

Again, we assume  -j i1,4 1 4 in the relative ordering of parafermionmodes After commuting the correction
operator through the chargemeasurement operator using equation (22), we have

P = P = P¢( ) ( )R C M C M , 35j i j i i i j i

where

P¢ = P ¢ ( )( ), 36j c

j j

j j1 4

1 4

h¢ = + ( ) ( )c c g h, , 37j j j j j i i
1 4 1 4

h d d d d= - + - -( ) ( ) ( )( ) ( )g h g g h, , 38j i i j i j i i j i j i i i1 1 4 1 4 4 1 4

encodes the change of the finalmeasurement result due to commuting the correction operator through.

3.2.3. Case C: general computation
Now, for a general computation comprised of Cliffold gates, we can break it down to a series of braiding
operations = ¼R i m, 1, ,i , followed by a set offinal projectivemeasurementsP = P P ¼ P( ), , , n1 2 on the
logical qubits to extract information as shown infigure 2(a) (wedefer the discussion of non-Cliffold gates to next
section). Here, each braiding operation involves two computational parafermions and two ancilla parafermions,
and each chargemeasurement involves two compuational parafermions. For simplicity, we keep the indices of
the parafermions implicit in the definition ofRi andP.

According to equation (17), each braiding operationRi can be simulated by a combination of a TPM
operatorMi and a correction operatorCi as shown in figure 2(b). According to the discussion in section 3.2.1, we
can commute -Cm 1 throughMm, which then becomes ¢Mm. In general, forMiwe need to commute ¼ -C C, , i1 1

through andMi becomes ¢Mi with a set of updated chargemeasurements

åD¢ = +
=

-

( ) ( )b b g h, , 39
k

i

ii i k k
1

1

where bi is the set of chargemeasurements ofMi andD ( )g h,i k k is defined in equation (32), encoding the change
due to commutingCk through

3Mi. Figure 2(c) illustrates the impact of commuting all the correction operators
through the TPMoperators.

In thefinal step of software-implemented correction operator, we commute all the correction operators
through thefinal set of logicmeasurementsP following section 3.2.2. According to equations (35)–(38), charge
measurement Pj inPwill become P¢j with updated chargemeasurement result

åh¢ = +
=

( ) ( )c c g h, , 40j j
k

m

j k k
1

3
The detailed formofD ( )g h,i k k can be different from equation (32)where a particular ordering of parafermions is assumed.
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where h ( )g h,j k k is defined in equation (38), encoding the change due to commutingCk through
4∏j. Once

commuted through thefinalmeasurements, the correction operators have no impact on the computation any
more. Thefinal result of software-implemented correction operators is shown in figure 2(d).

Therefore, the general procedure for carrying out a computation infigure 2(a) is to follow the steps in
figure 2(d) and record the chargemeasurement results ¢ ¼ ¢( )b b, ,1 m of the TPMoperators aswell as thefinal
measurements ( ¢ ¢c c,..., n1 ). In order to extract the actual logicmeasurement results ( ¼c c, , n1 ), we can do
postprocessing in two steps. First, using equation (39)we can perform a backtracking tofind ¼( )b b, ,1 m . For
instance, b1 is the same as ¢b1, which can be used to computeD ( )g k,2 1 1 . Then, b2 can be calculated using ¢b2 and
D ( )g k,2 1 1 . For general i, we use all the previously calculated ¼ -b i1, , 1 to computeD ( )g h,i k k ( = ¼ -k i1, , 1),
which is further used tofind bi. This way, we can calculate ¼( )b b, ,1 m using ¢ ¼ ¢( )b b, ,1 m . The second step of
postprocessing is to compute h ( )g h,j k k using ¼( )b b, ,1 m . Then equation (40)will give us the desired actual
measurements ( ¼c c, , n1 ).We summarize the postprocessing backtracking algorithmbelow. It runs in linear
time of the number of braiding operations and hence can be carried out efficiently. This is the essence of the
software-assisted FMFMBB.

Algorithm1.Postprocessing backtracking algorithm.

Input: ¢ ¢( )b b,... ,1 m : intermediate chargemeasurements
¢ ¼ ¢( )c c, , n1 : measured charges in thefinal

measurement of P¢ infigure 2(d)
Output: ¼( )c c, , n1 : originalmeasured charges in figure 2(a)
1: = ¢  ( )g kb b ,1 1 1 1 (equation (19))
2: for i=2 tomdo

3:  D- - - -( )g k g k, ,i i i i i1 1 1 1 (equation (33))
4: ¢ D ¼ D - -( ) ( )g k g kb b, , , , ,i i i ii i1 1 1 1 (equation (39))
5:  g kb ,i ii (equation (19))
6: h¼ ( ) ( )g h g h g h, , , , ,m m j i i1 1 (equation (38))
7: for j=1 ton do
8: h h¢ ¼ ( ) ( )c g h g h c, , , , ,j j j m m j1 1 (equation (40))

Figure 2. Schematic of software-implememented correction operator for a generic computation usingCliffold gates. (a)A series ofm
braiding operations ¼R R, , m1 followed byn projectivemeasurements P = P ¼ P( ), , n1 . Here each line represents a compuational
parafermion and each braiding ormeasurement acts on two parafermions. (b)Each braiding operation can be replaced by a TPM
operatorM followed by a correction operatorC (see equation (17)). (c)Commuting the correcition operators ¼C C, , m1 through the
TPMoperators ¼M M, , m2 . The TPMoperators are updated to ¢M . (d)Commuting the correction operators through the final
measurements. Themeasurements are updated to P¢.

4
Again, the detailed form of h ( )g h,j k k can be different from equation (38)where a particular ordering of parafermions is assumed.
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4.Demonstration of non-Abelian statistics with FMF-MBBprotocol

Now,we showhow to apply our software-assisted FMF-MBBprotocol to the task of demonstrating non-Abelian
statistics ofMFs.We do this by considering the two simplest examples of braiding experiments involving a single
braiding exchange and two braiding exchanges.

4.1. Single-braiding experiment
Figure 3(a) shows the usual way of using a single braiding exchange to demonstrate non-Abelian statistics ofMFs
in three steps. First,Majorana pairs of (1, 5) and (4, 6) are initialized in the even parity states. ThenMFs 1 and
4 aremoved physically to exchange their positions [45]. Finally, the fermion charge b15 of the pair (1, 5) is
measured. Ideally, the parity of b15 has 50%probability to be even or odd, which is a direct evidence of the non-
Abelian statistics ofMFs.

Figure 3(b) shows the approach of FMF-MBBusing ancillaMFs a2 and a3.We replace the physical exchange
ofMFs 1 and 4 by the software-assisted FMF-MBBwhich is followed by afinal chargemeasurement of the pair
(1, 5). The parity of ¢b15 can be different from that of b15. The operator describing the usual braiding infigure 3(a)
is given by

= Pˆ ˆ ( )( )F R . 41b1
15

14
15

Using equation (17), we can replace the braiding operator by the set of threemeasurements shown infigure 3(b)
followed by the correction operator (ignoring the trivial phase factor)

= Pˆ ˆ ˆ ( )( )F C M , 42b
g h

1
15

14,23
,

14,23
15

where

= Ä ¯ ( )g b b , 4312 24

= Ä˜ ¯ ( )h b b . 4423 23

After commuting the correction operator through the final chargemeasurement, we have

= P ¢
ˆ ˆ ˆ ( )( )F C M , 45

g h

b1 14,23
, 15

14,23
15

where

¢ = + ( )b b g . 4615 15

Therefore, for the single braiding experiment, one just needs to follow the steps depicted infigure 3(b) and the
actual charge b15 is connected to themeasured charged ¢b15 via equation (46).

4.2.Double-braiding experiment
The case of two braidings can be approached in a similar way as shown infigure 3(c). The operator describing the
action of two braiding exchanges followed by a charge readout is given by

Figure 3.Demonstration of braiding exchange statistics ofMajorana fermions. (a)The usual way of demonstrating the non-Abelian
statistics ofMajorana fermions in three steps. (b) FMFprotocol for a single braiding exchange: the initialization andmeasurement
steps are the same as (a), but the physical exchange ofMFs is replaced by a set of three chargemeasurements. (c) FMFprotocol for two
braiding exchanges. The final charge readout ¢b15 is different from b15 because the correction operator is applied in software. See
equations (46) and (56) in themain text for the connection between b15 and ¢b15.
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= P
b aˆ ˆ ˆ ( )( ) ( ) ( )

F R R . 47b2
15

14 1415

Using equation (17), we have (again, neglecting the overall phase factor)

= P
b ab b a aˆ [ ˆ ˆ ][ ˆ ˆ ] ( )( ) ( ) ( )

F C M C M , 48b
g h g h

2
15

14,23
,

14,23 14,23
,

14,2315

where
aˆ ( )

M14,23 and
bˆ ( )

M14,23 are the first and secondTPMoperators respectively and

= Äa b
a b a b¯ ( )( ) ( )

g b b , 49, 12
,

24
,

= Äa b
a b a b˜ ¯ ( )( ) ( )

h b b . 50, 23
,

23
,

Finally, we can commute the two correction operators through thefinal chargemeasurement operator
(equation (23) and equation (45))

= P
b a

¢
¢b b a aˆ ˆ ˆ ˆ ˆ ( )( ) ( ) ( )

F C C M M , 51
g h g h

b2 14,23
,

14,23
, 15

14,23 14,23
15

where

= P P P
b ¢

b b b¢ ¢ ¢
ˆ ( )( )

˜
( ) ( ) ( )

( ) ( ) ( )M , 52
b b b

14,23
23 24 12

23 24 12

= +b b
a

¢ ( )( ) ( )b b g , 5312 12

= + -b b
a a

¢ ( )( ) ( )b b g h , 5424 24

= +
b b

a
¢˜ ˜ ( )( ) ( )

b b h , 5523 23

¢ = + +a b ( )b b g g . 5615 15

In the two braiding experiment using our proposed FMF-MBBprotocol, we have access to the charge readouts
a( )b from the first set of threemeasurements, b ¢( )b from the second set, and the final charge readout ¢b15.We can

first backtrack and calculate b( )b using equations (53)–(55), which yields bg and bh according to equations (49)
and (50). Then a further backtracking using equation (56) gives us the actual parity of b15 after two braiding
exchanges. Here, the key is that the correction operator is a Pauli operator acting on the logical qubitmade of
twoMajoranamodes. The TPMoperator comprises three single-qubit projectivemeasurements, which remain
projectivemeasurements with updatedmeasurement results after commuting Pauli operators through.

Ideally, given an initially even parity state of (1, 5), b15 has a 100%probability offlipping to the odd parity
after two braidings as a direct consequence of the non-Abelian statistics ofMFs.Here, the only experimental
capability required is to performquantumnon-demolition (QND) readouts of the charge ofMajorana pairs
[45, 54]. Such a simplificationwill allow us not toworry about the diabatic errors associatedwithmovingMFs
and instead to concentrate on improving readout techniques. In fact, because themeasurements areQND, a
natural way to boost themeasurement fidelity is to simply repeat the same charge readout several times. In
addition, FMF-MBBprotocol removes the uncertainty associatedwith the number ofmeasurements in the
originalMBB approach, and hence ismore efficient experimentally. Therefore, we believe our FMF-MBB
approach can be an appealing avenue to the demonstration of non-Abelian braiding statistics.

5.MOTQCwith FMF-MBBprotocol

Finally, we outline how to adapt our FMFprotocol to themore ambitious long-term goal ofMOTQCusingMFs
and parafermions. ForClifford gates, it is straightforward to apply the software-assisted FMF-MBBprotocol
because braiding itself is enough to carry out Clifford operations.

However, to complete the set of gates for universal quantum computation usingMFs, one also needs to add
the p 8-phase gate (T̂ gate)which cannot be realized in a topologically protectedway. Fortunately, there exist
protocols such as ‘magic state distillation’ to generate a high fidelity T̂ gate. First, the distillation protocol starts
with 15 approximate copies of the ancilla state ñ = ñ + ñp∣ (∣ ∣ )a 0 e 1 2i 4 . ForMFs, this can be done by
initializing the state in ñ∣0 and performing a single-qubit p 4 rotation.Oneway to generate the single-qubit
rotation is to bringing twoMajoranamodes together for a fixed amount of time such that the tunneling splitting
imposes an approximate p 4 phase difference between ñ∣0 and ñ∣1 . Another possibility is to use hybrid systems
that couple theMFswith other physical devices (e.g., tunnel junctions, flux qubits) to produce the desired
ancillary states [49, 54, 56–58]. In the second step, these states are then projected onto the subspace of the Reed-
Muller code [59, 60]. By subsequent stabilizermeasurements, the states are encoded into a single logical qubit
and it is a purified version of ñ∣a . Finally, aT gate can be applied to the data qubit after performing several
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Clifford operations and projectivemeasurements on a small circuitmade of the purified ñ∣a state and the data
qubit5.

Notice that the first step to generate ancilla states is independent of howwe carry out the braiding operations
(nomatter it is done via physicalmovements or our FMF-MBBprotocol). However, the second and third steps
do heavily depend on the details of braiding since all the Clifford operations break down to sequences of braiding
exchanges. Fortunately, there are only two types of operations in the distillation protocol, namely Clifford operations
and single-qubit projectivemeasurements.Adopting the FMF-MBBprotocol developed above, we can replace
each braiding operator by the product of the TPMoperator M̂ and the correction operator Ĉ (equation (17)).
All the correction operators can then be commuted through the finalmeasurements (equation (51)). The single-
qubit projectivemeasurements remain Paulimeasurements with updatedmeasurement results dependent on
the correction operators. Therefore, the same software-assisted FMF-MBBprocedure outlined for the single-
braiding and two-braiding experiments applies equally well to themagic state distillation protocol and hence to
MOTQCusingMFs.

For N parafermions,magic state distillation is well-studied for the case of primeN [61], and it was recently
shown that all Clifford operations can be realized via braiding for oddN [62]. Hence, all the above discussion
carries over to the scenario of TQCusing odd primeN parafermions.

6. Conclusion

Wehave proposed a protocol ofMBBwithout forcedmeasurements. In particular, the braiding exchange is
shown to be equivalent to a set of threemeasurements followed by a correction operation becausewe can always
introduce correction operations to compensate the (topological) charge transfer during theMBB. Furthermore,
for quantum computationwithMFs or parafermions, we also show that the correction operator can be applied
in software similar in spirit to how the Pauli operations can be implemented in surface codes. Like the original
MBBprotocol, our FMF-MBBprotocol removes the need formoving anyons physically and reduces the
experimental requirement of braiding to the capability of performing projectivemeasurements only. Compared
to theMBBprotocol, it also removes the ambiguity in the number ofmeasurements needed to realize a single
braiding operation. Finally, we show explicitly that such a simple braiding protocol can be applied to both the
demonstration of non-Abelian braiding statistics andmeasurement-based TQCusingMFs and parafermions.
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