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Singlet fraction is an entanglement witness in partially polarized ensembles
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We establish a sufficient and tight condition for bipartite entanglement in an arbitrary system of
qubits, namely ps > (1 −m2)/2 where ps is the singlet fraction and m is the magnetization of the
state, by deriving an explicit expression for the lower bound of its concurrence as well as through
geometric arguments. This entanglement witness can be used to investigate the possible existence
of pairwise quantum spin correlations in partially polarized ensembles of ultracold atoms.

I. INTRODUCTION

The nature of spin correlations has been explored in
several recent experiments with cold atoms [1–7]. Such
ensembles do not lend themselves to a full tomography.
Instead, spin correlations between atom pairs can be
studied through macroscopic measurements that probe
averaged pairwise interactions between atoms of the en-
semble. For example, swap gates and formation of alkali
dimers provide access to the singlet fraction in balanced
spin ensembles [6–8]. The singlet fraction also plays a key
role in the physics of fermions with s-wave interactions.
Though there already exists a bound on the singlet frac-
tion for pairwise entanglement in unpolarized ensembles,
i.e. a singlet fraction larger than half [9, 10], this has not
yet been extended to partially polarized ensembles.
In the case of single bipartite qubit systems, such as

polarized photon pairs, direct measurement of the con-
currence or quantum tomography is achievable [11, 12].
Despite this, it is desirable to have a simple entanglement
witness in order to reduce the number of measurements
required to detect entanglement. Indeed, many such wit-
nesses involve the singlet fraction of the qubit pair [13].
However, these witnesses do not hold for all classes of
states [14, 15], or can be improved upon by including the
degree of polarization of the state [16].
Here we establish a bound on the singlet fraction of

a general two-body mixed state that is a sufficient and
tight condition for its entanglement, namely

ps >
1−m2

2
(1)

where ps is the singlet fraction and m is the magnetiza-
tion. This result, which henceforth we refer to as the “sin-
glet bound”, makes no assumptions on the initial state
and therefore is a condition for bipartite entanglement of
any qubit system. For the sake of consistency, we adopt a
notation that suits the discussion of spin ensembles (e.g.
spin state of an atom instead of polarization state of a
photon), where the qubit system of interest is the reduced
density matrix describing the spin state of pairs in the
ensemble.
The paper is organized as follows: in Sec. II, we intro-

duce some notation and describe the physical limit on the

singlet fraction of a general two-body mixed state with
magnetization, while in Sec. III, we derive a lower bound
for the concurrence of this general state from which we
can obtain the singlet bound. In Sec. IV we provide an
intuitive derivation of the singlet bound based on geo-
metric arguments. Finally in Sec. V, we summarize and
discuss implications of the result.

II. DEFINITIONS AND PHYSICAL LIMIT

The spin state of pairs in a spin-1/2 ensemble can be
described using the antisymmetric singlet state |s0〉 =

(|↑↓〉 − |↓↑〉)/√2 and the symmetric triplet states |t0〉 =
(|↑↓〉+ |↓↑〉)/√2, |t1〉 = |↑↑〉, |t−1〉 = |↓↓〉. These form an
orthonormal set of basis states with well defined angular
momentum quantum numbers |S, Sz〉. A general mixed
state can be written in this basis using the notation

ρAB = ps |s0〉 〈s0|+
∑

i∈{0,±1}

(qi |s0〉 〈ti|+ q∗i |ti〉 〈s0|)

+
∑

i,j∈{0,±1}

(pij |ti〉 〈tj |)

(2)

where the populations are normalized, i.e. Tr[ρAB] = 1.

The total spin operator is �S = (σ̂A + σ̂B)/2 where
e.g. σ̂A = (σx, σy, σz)

A are the Pauli spin operators ap-
plied on the reduced state A, which is obtained by tracing
over state B, i.e. ρA = TrBρ

AB. Then the magnetization
�m = (mx,my,mz) is defined as

�m =
〈
�S
〉
= Tr[�SρAB]. (3)

In particular, using the fact that Sz |s0〉 = Sz |t0〉 = 0,
we can obtain a general expression for the z component
of the magnetization:

mz = Tr[Szρ
AB] = p11 − p−1−1. (4)

Since the populations of Eq. 2 must sum to unity
for a normalized probability, the singlet fraction is thus
bounded by the relation ps ≤ 1 − |mz | − p00. By defi-
nition we have |mz| ≤ m (using the notation |�m| = m),
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and so we establish a physical limit on the largest singlet
fraction for an arbitrary magnetization:

ps ≤ 1−m. (5)

III. CONCURRENCE

When the concurrence associated with a two-body den-
sity matrix is positive, i.e. C(ρAB) > 0, the state ρAB

is entangled [17]. The state in Eq. 2 has 15 degrees of
freedom. In order to more easily bound its concurrence,
we first apply a transformation that decreases its num-
ber of degrees of freedom without increasing its entangle-
ment. Using the unitary rotation operator about the z
axis Uz(θ) = UA

z (θ)⊗UB
z (θ) where θ ∈ [0, 2π), we define

the “spun state” as

〈ρAB〉 = 1

2π

∫ 2π

0

dθ U †
z (θ)ρ

ABUz(θ) (6)

which is the mixed state ρAB after uniform rotation
about the z axis. This transformation eliminates co-
herences between states in Eq. 2 with different angular
momentum quantum number Sz. This can be under-
stood by recalling that Sz is the generator of rotation
i.e. Uz(θ) = eiθSz , and also that U †

z (θ) = Uz(−θ). Thus

the spinning operation in Eq. 6 acts trivially on the pop-
ulations and the coherence between |s0〉 and |t0〉 (i.e. the
q0 term), while all other coherences are given a non-trivial
θ dependence, namely einθ with n 
= 0, and hence the
spinning causes these terms to vanish. After spinning,
the general two-body density matrix is

〈ρAB〉 = ps |s0〉 〈s0|+ q0 |s0〉 〈t0|+ q∗0 |t0〉 〈s0|
+

∑
i∈{0,±1}

(pii |ti〉 〈ti|) (7)

and has only 6 degrees of freedom. Crucially, because
rotation can be implemented using local operation and
classical communication (LOCC), the spun state is at
most as entangled as the unspun state i.e. C(ρAB) ≥
C(〈ρAB〉) [18].
We can now explicitly compute the concurrence of the

spun state. First we rewrite the spun state in a more
suitable notation using the magnetization mz,

〈ρAB〉 = ps |s0〉 〈s0|+ a |t0〉 〈t0|+ ceiφ |s0〉 〈t0|
+ ce−iφ |t0〉 〈s0|+ b+mz

2
|t1〉 〈t1|

+
b−mz

2
|t−1〉 〈t−1| ,

(8)

where the normalized populations are ps + a+ b = 1 and
the coherence is c = η

√
aps with η ∈ [0, 1]. Then we write

this state in the standard basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉},
which in matrix form yields

〈ρAB〉 → 1

2

⎛
⎜⎝
b+mz 0 0 0

0 a+ ps + 2c cosφ a− ps − i2c cosφ 0
0 a− ps + i2c cosφ a+ ps − 2c cosφ 0
0 0 0 b−mz

⎞
⎟⎠ . (9)

Using the “spin-flipped” state 〈ρ̃AB〉 = (σy ⊗
σy) 〈ρAB〉∗ (σy ⊗ σy), we compute the eigenvalues of the

matrix R =
√√

〈ρAB〉 〈ρ̃AB〉
√
〈ρAB〉, which are equal

to the square root of the eigenvalues of the matrix
〈ρAB〉 〈ρ̃AB〉 [17], namely

λ1,2 =

√
a2 + p2s − 2c2 cos 2φ±

√
(a2 + p2s − 2c2 cos 2φ)2 − 4(c2 − aps)2√

2

λ3 = λ4 =

√
b2 −m2

z

2
.

By majoritizing these eigenvalues, we obtain the concur- rence:

C(〈ρAB〉) = max[0, λ1 − λ2 − λ3 − λ4]

= max[0,

√
(ps − a)2 + 4c2 sin2 φ−

√
b2 −m2

z],

(10)
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FIG. 1. Each circle in singlet fraction ps vs. magnetization
mz space is one of 10,000 randomly generated spun mixed
states 〈ρAB〉 described by Eq. 7. Blue (darker) circles have
C(〈ρAB〉) = 0 and are not entangled while green (lighter)
circles have C(〈ρAB〉) > 0 and are entangled. Note that
there are blue circles immediately beneath the singlet bound
while there are none above, effectively demonstrating that the
bound is a tight and sufficient condition for entanglement.
Contour lines are described by Eq. 13 and give the minimum
concurrence of the general state in Eq. 2.

which is positive when

ps >
1

2

(
1− 2a−m2

z

1− 2a+ 2aη2 sin2 φ

)
. (11)

Eqn. 11 provides a general bound on the singlet fraction
for the entanglement of a magnetized state with triplet
population a and coherence c. However in order to ensure
entanglement for all choices of {a, η, φ}, we consider the
worst case where a = 0, which yields a sufficient condition
for entanglement:

ps > sup
a,η,φ

[
1

2

1− 2a−m2
z

1− 2a+ 2aη sin2 φ

]
=

1−m2
z

2
. (12)

Note that we can choose our coordinate system such
that m2

z = m2. Furthermore Eq. 12 is a tight condition
for entanglement as there exists a class of non-entangled
states (i.e. with zero concurrence) immediately below the
bound, which is the class of spun states with a = 0 and
ps = (1 −m2

z)/2. To be more precise, if the magnetiza-
tion is measured only along a specific direction n that is
not aligned with the magnetization vector (i.e. the z di-
rection), then the bound is sufficient as |mn| < |m|, but
is no longer tight.
We verify that the singlet bound is a tight and suffi-

cient condition for entanglement by numerically gener-
ating many random mixed states that span the ps and
mz space, and computing their concurrence. Each cir-
cle in Fig. 1 corresponds to one of 10,000 random spun

mixed states. As expected, the physical limit in Eq. 5
is satisfied. The blue circles have C(〈ρAB〉) = 0 and
are not entangled while green circles have C(〈ρAB〉) > 0
and are entangled. Because the spinning transforma-
tion can be implemented with LOCC, it is true that
C(ρAB) ≥ C(〈ρAB〉). Thus the absence of non-entangled
states above the singlet bound demonstrates that the
bound is a sufficient condition for entanglement of ρAB,
while the existence of non-entangled states immediately
beneath the bound demonstrates the tightness of the
bound. Note that there are entangled states well below
the singlet bound as it is not a necessary condition for
entanglement.
Furthermore, we can use the fact that the minimum

of Eq. 10 occurs when a = 0 along with the constraint
of a normalized probability, ps + b = 1, to generalize
the singlet bound to a tight and sufficient condition for
having positive concurrence C(ρAB), namely

ps >
1− C(ρAB)2 −m2

z

2(1− C(ρAB))
(13)

where we used the fact that min[C(ρAB)] =
min[C(〈ρAB〉)]. In other words, Eq. 13 describes the min-
imum concurrence of a state with ps and mz, the contour
lines of which are shown in Fig. 1.
We note that this result improves upon the concurrence

bound provided in Ref. [16], which yields the sufficient

condition ps ≥ 1
3
(1 +

√
1 + 3C2) when applied to Eq. 8

with a = 0.

IV. VECTORIAL ARGUMENT

Here we provide a more intuitive derivation of the sin-
glet bound based on geometric arguments. The state of a
spin-1/2 system can be represented on the Bloch sphere
using the relation

ρ = I/2 + �v · σ̂/2 (14)

where I is the identity operator and �v is the Bloch vec-
tor [19]. Starting from the definition of the magnetization
given in Eq. 3, it follows that the magnetization of the
two-body state is related to the sum of the individual
Bloch vectors: �m = 1

2
�vA + 1

2
�vB , i.e. an equally weighted

sum in Bloch space. Squaring this expression yields

m2 =
1

4
(v2A + v2B + 2 �vA · �vB)

=
1

4
(v2A + v2B + 2vAvB cosβ)

(15)

where β is the angle between the two Bloch vectors.
First consider the case of a separable two-body state

ρAB = ρA ⊗ ρB where ρA and ρB are pure (we will later
generalize to the case where these states are mixed). We
are free to choose the coordinate system, thus we can
align ρA along the z axis such that ρA = |↑〉 〈↑| while ρB
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is arbitrary, so ρB = |ψ〉 〈ψ| where |ψ〉 = c↑ |↑〉 + c↓ |↓〉.
Then the two-body state is

ρAB = ρA ⊗ ρB =
∑

i,j∈{↑,↓}

cij |↑A iB〉 〈↑A jB| (16)

whose singlet fraction is ps = Tr[|s0〉 〈s0| ρAB] = c↓↓/2
since the only non-zero term in the singlet projector is
|↑A↓B〉 〈↑A↓B| /2 (state ρA has no spin ↓ component).
The singlet fraction is uniquely determined by β:

ps =
1

4
(1− cosβ) =

1

4
(1− �vA · �vB). (17)

Since both ρA and ρB are pure states, then vA = vB = 1,
and so Eq. 15 reduces to

m2 =
1

2
(1 + �vA · �vB) =

1

2
(1 + cosβ). (18)

Using cosβ = 2m2−1 from this result along with Eq. 17,
we obtain the critical singlet fraction

p∗s =
1−m2

2
(19)

which is the boundary of a non-entangled state as derived
in Sec. III.
Next consider the case of a separable state ρAB =

ρA ⊗ ρB where where ρA and ρB are mixed. We can
still choose the coordinate system such that ρA is aligned
along z: ρA = p↑A |↑〉 〈↑| + p↓A |↓〉 〈↓|. The state ρB

remains arbitrary therefore ρB =
∑

ij cij |i〉 〈i| where

i, j ∈ {↑, ↓}. Computing the singlet projector yields

ps =
p↑Ac↓B

2
+

p↓Ac↑B
2

=
1

4
(1− vAvB cosβ) =

1

4
(1− �vA · �vB).

(20)

Using Eq. 15 we arrive at

ps =
1

2

(
1−m2 +

1

4
(v2A − 1 + v2B − 1)

)
≤ p∗s, (21)

where the inequality holds because |vA| < 1 and |vB| < 1.
Finally, we generalize this result to all classes of possi-

ble non-entangled states by considering a mixture of such
states i.e. ρAB =

∑
i Piρ

AB
i where Pi is the probability

of ρAB
i = ρAi ⊗ ρBi . The singlet fraction psi of each ρAB

i

is still bounded by Eq. 21, thus

p̄s =
∑
i

Pipsi ≤ 1−∑
i Pim

2
i

2
=

1− m̄2

2
(22)

since m̄2 =
∑

i Pim
2
i . Hence if the two-body state is non-

entangled i.e. ρAB =
∑

i Piρ
A
i ⊗ ρBi , then the inequality

in Eq. 22 holds. The contrapositive is also true: If ps >
(1− m̄2)/2, then ρAB is entangled.

V. CONCLUSION AND OUTLOOK

In summary, we derived a sufficient and tight condi-
tion for entanglement of a general two-body mixed state
using the magnetization and singlet fraction of the state,
namely ps > (1 − m2)/2. This is generalized to a simi-
lar condition for having positive concurrence C(ρAB) in
Eq. 13.

Equivalently, an entanglement witness W [ρAB] can be
constructed:

W [ρAB] = 〈s0| ρAB |s0〉 − 1

2
+

|Tr[�SρAB]|2
2

. (23)

If W [ρAB] > 0, then entanglement is required to explain
the spin correlations in the ensemble. If W [ρAB] ≤ 0,
then there exists a non-entangled state that has the same
observed ps and m. The witness detects bipartite entan-
glement in an arbitrary system of qubits, where the phys-
ical meaning of the magnetization depends on the inter-
nal degree of freedom of the system. For example, in the
case of polarization entanglement between a photon pair,
magnetization is replaced by the degree of polarization.

The witness is derived by first reducing the number of
degrees of freedom (without increasing entanglement) of
the general two-body density matrix using the “spinning”
transformation in Eq. 6, after which we can explicitly
compute its concurrence. This approach might be useful
to derive witnesses for higher-dimensional qubit systems.
For example, the 63 degrees of freedom in a three-body
density matrix can be reduced to a block-diagonal matrix
with 12 degrees of freedom by spinning along both x and
z. However this would require the use of an entanglement
measure for higher-than-bipartite systems [20, 21].

We note that there exist “spin-squeezing” type bounds
for entanglement of N-qubit states which have the benefit
of needing only collective spin and angular momentum
measurements, but these types of bounds do not com-
pletely characterize all separable states [22–24]. Hence,
our entanglement witness is a new tool that can be used
to detect pairwise quantum correlations in partially po-
larized ensembles.
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